Dekimpe, Karel A note on the torsion elements in the centralizer of a finite index subgroup. (English) Zbl 0867.20022 Bull. Belg. Math. Soc. - Simon Stevin 3, No. 5, 497-500 (1996). Let \(H\) be any subgroup of finite index in a given group \(G\) and \(T\) be the set of torsion elements of the centralizer \(C_G(H)\) of \(H\) in \(G\). The author proves that \(T\) is a subgroup of \(G\). Moreover it is shown that if \(H\) is torsion free and normal then \(T\) is the unique maximal normal torsion subgroup of \(G\). Reviewer: A.I.Budkin (Barnaul) Cited in 1 Document MSC: 20E07 Subgroup theorems; subgroup growth Keywords:subgroups of finite index; sets of torsion elements; centralizers; maximal normal torsion subgroups PDF BibTeX XML Cite \textit{K. Dekimpe}, Bull. Belg. Math. Soc. - Simon Stevin 3, No. 5, 497--500 (1996; Zbl 0867.20022) Full Text: EuDML OpenURL