×

zbMATH — the first resource for mathematics

Classification of compact complex homogeneous spaces with invariant volumes. (English) Zbl 0883.53046
Summary: In this note we give a classification of compact complex homogeneous spaces with invariant volume.

MSC:
53C30 Differential geometry of homogeneous manifolds
57T15 Homology and cohomology of homogeneous spaces of Lie groups
53C56 Other complex differential geometry
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] A. Borel, Kähler coset spaces of semisimple Lie groups, Nat. Acad. Sci. USA, 40 (1954), 1147-1151. · Zbl 0058.16002
[2] A. Borel and R. Remmert, Über kompakte homogene Kählersche Mannigfaltigkeiten, Math. Ann. 145 (1961/1962), 429 – 439 (German). · Zbl 0111.18001 · doi:10.1007/BF01471087 · doi.org
[3] Josef Dorfmeister and Zhuang Dan Guan, Classification of compact homogeneous pseudo-Kähler manifolds, Comment. Math. Helv. 67 (1992), no. 4, 499 – 513. · Zbl 0780.53047 · doi:10.1007/BF02566516 · doi.org
[4] Josef Dorfmeister and Zhuang Dan Guan, Fine structure of reductive pseudo-Kählerian spaces, Geom. Dedicata 39 (1991), no. 3, 321 – 338. · Zbl 0739.53040 · doi:10.1007/BF00150759 · doi.org
[5] Josef Dorfmeister and Zhuang Dan Guan, Pseudo-Kählerian homogeneous spaces admitting a reductive transitive group of automorphisms, Math. Z. 209 (1992), no. 1, 89 – 100. · Zbl 0761.32017 · doi:10.1007/BF02570823 · doi.org
[6] Josef Dorfmeister and Kazufumi Nakajima, The fundamental conjecture for homogeneous Kähler manifolds, Acta Math. 161 (1988), no. 1-2, 23 – 70. · Zbl 0662.32025 · doi:10.1007/BF02392294 · doi.org
[7] Z. Guan, Examples of compact holomorphic symplectic manifolds which admit no Kähler structure. In Geometry and Analysis on Complex Manifolds-Festschrift for Professor S. Kobayashi’s 60th Birthday, World Scientific 1994, pp. 63-74.
[8] D. Guan, A splitting theorem for compact complex homogeneous spaces with a symplectic structure, Geom. Dedi. 63 (1996), 217-225. CMP 97:02
[9] D. Guan, Classification of compact complex homogeneous spaces with invariant volumes. Preprint. · Zbl 1050.53033
[10] D. Guan, Classification of compact homogeneous spaces with invariant symplectic structures. Preprint. · Zbl 0883.53045
[11] Jun-ichi Hano, Equivariant projective immersion of a complex coset space with non-degenerate canonical hermitian form, Scripta Math. 29 (1973), 125 – 139. · Zbl 0259.32009
[12] Jun-ichi Hano, On compact complex coset spaces of reductive Lie groups, Proc. Amer. Math. Soc. 15 (1964), 159 – 163. · Zbl 0129.15701
[13] A. T. Huckleberry, Homogeneous pseudo-Kählerian manifolds: A Hamiltonian viewpoint, Preprint, 1990. · Zbl 0779.32027
[14] Jun-ichi Hano and Shoshichi Kobayashi, A fibering of a class of homogeneous complex manifolds, Trans. Amer. Math. Soc. 94 (1960), 233 – 243. · Zbl 0097.37201
[15] J. L. Koszul, Sur la forme hermitienne canonique des espaces homogènes complexes, Canad. J. Math. 7 (1955), 562-576. · Zbl 0066.16104
[16] Y. Matsushima, Sur les espaces homogènes kählériens d’un groupe de Lie réductif, Nagoya Math. J. 11 (1957), 53-60. · Zbl 0099.37501
[17] Yozô Matsushima, Sur certaines variétés homogènes complexes, Nagoya Math. J. 18 (1961), 1 – 12 (French).
[18] J. Tits, Espaces homogènes complexes compacts, Comment. Math. Helv. 37 (1962/1963), 111 – 120 (French). · Zbl 0108.36302 · doi:10.1007/BF02566965 · doi.org
[19] H. C. Wang, Complex parallisable manifolds, Proc. Amer. Math. Soc. 5 (1954), 771-776. · Zbl 0056.15403
[20] H. C. Wang, Closed manifolds with homogeneous complex structure, Amer. J. Math. 79 (1954), 1-32. · Zbl 0055.16603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.