×

The possible numbers of zeros in an orthogonal matrix. (English) Zbl 0918.15007

It is shown that for \(n\geq 2\) there is an \(n\times n\) indecomposable orthogonal matrix with exactly \(k\) entries equal to zero if and only if \(0\leq k\leq (n-2)^2\).
Reviewer: G.Bonanno (Davis)

MSC:

15B57 Hermitian, skew-Hermitian, and related matrices
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
PDF BibTeX XML Cite
Full Text: DOI EuDML EMIS