×

The canonical endomorphism for infinite index inclusions. (English) Zbl 0933.46059

The paper extends some results of R. Longo [Commun. Math. Phys. 159, 133-150 (1994; Zbl 0802.46075)]. Given are necessary and sufficient algebraic conditions on an endomorphism \(\gamma\) of a von Neumann algebra \(M\) which guarantee the existence of a subalgebra \(N\subset M\) for which \(\gamma\) is the associated canonical endomorphism. This is done in the cases (dual to each other) when there is a normal faithful conditional expectation either from \(M\) to \(N\) or from \(N'\) to \(M'\). The result is then applied when compact and discrete Woronowicz algebras act alternately on the factors in the various levels of Jones’ tower.
The authors explain that their motivation to study such canonical endomorphisms \(\gamma\) of the inclusion \(N\subset M\) is that the inclusion can be interpreted as being generated by means of a cross product by the action on \(N\) of an implicitly defined “quantum object” and \(\gamma\) can be regarded in some sense as the “regular representation” to this object.

MSC:

46L37 Subfactors and their classification
46L10 General theory of von Neumann algebras

Citations:

Zbl 0802.46075
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Combes, F. and C. Delaroche: Groupe modulaire d’ une espérance conditionnelle dans une algèbre de von Neumann. Bull. Soc. Math. France 103 (1975), 385 - 426. · Zbl 0321.46050
[2] Enock, M. and It. Nest: Irreducible inclusion of factors, multiplicative unitaries and Kac algebras. J. Funct. Anal. 137 (1996), 466 - 543. · Zbl 0847.22003
[3] Enock, M.: Inclusions irredtjctzbles des facteurs et unitaires multiplicatifs. Part II. J. Funct. Anal. 154 (1998), 67 .- 109. · Zbl 0921.46065
[4] Enock, M. and J. M. Schwartz: Kac Algebras and Duality of Locally Compact Groups. New York: Springer 1992. · Zbl 0805.22003
[5] Fidaleo, F. and T. Isola: On the conjugate endomorphism in the infinite index case. Math. Scand. 77 (1995), 289 - 300. · Zbl 0851.46041
[6] Fidaleo, F. and T. Isola: Minimal expectations for inclusions with atomic centres. Intern. J. Math. 7 (1996), 307 -327. · Zbl 0863.46038
[7] Halpern, H., Kaftal, V. and L. Zsido: Finite weight projections in von Neumann algebras. Pac. J. Math. 147 (1991), 81 - 121. · Zbl 0745.46062
[8] Hewitt, E. and K. A. Ross: Abstract Harmonic Analysis (Vol. 11). New York: Springer 1970. · Zbl 0213.40103
[9] Hiai, F.: Minimum index for subfactors and entropy. J. Oper. Theory 24 (1990), 301 - 336. · Zbl 0804.46073
[10] Izumi, M., Longo, R. and S. Popa: A Galois correspondence for compact groups of au- tomorphisms of von Neumann algebras with a generalization to Kac algebras. Preprint 1996.
[11] Kadison, R. V. and J. R. Ringrose: Fundamentals of the Theory of Operator Algebras (Vol. I and II). New York: Acad. Press 1983 and 1986.
[12] Kosaki, H.: Extension of Jones’ theory of index to arbitrary factors. J. Funct. Anal. 66 (1986), 123 - 140. · Zbl 0607.46034
[13] Kosaki, 11.: Characterization of crossed product (properly infinite case). Pac. J. Math. 137 (1989), 159 - 167. · Zbl 0693.46058
[14] Longo, R.: Simple injective subfactors. Adv. Math. 63 (1987), 152 - 171. · Zbl 0616.46054
[15] Longo, R.: index of subfactors and statistics of quantum fields (Part I). Commun. Math. Phys. 126 (1989), 217 - 247. · Zbl 0682.46045
[16] Longo, R.: Index of subfactors and statistics of quantum fields (Part II). Commun. Math. Phys. 130 (1990), 285 - 309. · Zbl 0705.46038
[17] Longo, R.: Minimal index and braided subfactors. J. Funct. Anal. 109 (1992), 98 - 112. · Zbl 0798.46047
[18] Longo, R.: A duality for iJopf algebras andfor subfactors (Part I). Commun. Math. Phys. 159 (1994), 133 - 150. · Zbl 0802.46075
[19] Longo, R. and K. H. Rehren: Nets of subfactors. Rev. Math. Phys. 7 (1995), 567 -597. · Zbl 0836.46055
[20] Mack, G. and V. Schomerus: Quasi Hopf quantum symmetry in quantum theory. Nucl. Phys. B370 (1992), 185 if. · Zbl 1221.81108
[21] Masuda, T. and Y. Nakagami: A von Neumann algebra framework for the duality of the quantum groups. Pubi. Res. Inst. Math. Sci. Kyoto 30 (1994), 799 - 850. · Zbl 0839.46055
[22] Nakagami, Y. and M. Takesaki: Duality for Crossed Products of von Neumann Algebras (Lecture Notes in Mathematics: Vol. 731). New York: Springer 1979. · Zbl 0423.46051
[23] Nill, F. and H.-W. Wieshrock: A comment on Jones inclusions with infinite index. Rev. Math. Phys. 7 (1995), 599 - 630. · Zbl 0842.46038
[24] Paschke, W. L.: Inner product modules over B-algebras. Trans. Amer. Math. Soc. 182 (1973), 443 - 468. · Zbl 0239.46062
[25] Pimsner, M. and S. Popa: Entropy and index for subfactors. Ann. Scient. Ecol. Norm. Sup. (4) 19 (1986), 57 - 106. · Zbl 0646.46057
[26] Popa, S.: Classification of subfactors and of their endomorphisms (Conf. Board Math. Soc. Lect. Notes Ser.: Vol. 86). Providence (Rhode Island): Amer. Math. Soc. 1995. · Zbl 0865.46044
[27] Stratila, S.: Modular Theory in Operator Algebras. Tunbridge Wells, Kent (England): Abacus Press 1981. · Zbl 0504.46043
[28] ’ Liat illa, S. and L. Zsido: Lectures on von Neumann Algebras.. Turnbridge Wells, Kent (England): Abacus Press 1979.
[29] Takesaki, M.: Theory of Operator Algebras (Vol. I). New York: Springer 1979. · Zbl 0436.46043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.