Choi, Yun Sung; Kim, Sung Guen The \(\lambda\)-function in the space \(P(^2\ell_2^2)\). (English) Zbl 0946.46039 J. Inequal. Appl. 3, No. 3, 303-311 (1999). The \(\lambda\)-function for (the unit ball of) a Banach space is a certain quite specific function related to convexity and the extreme point structure [see R. H. Lohman, Contemp. Math. 85, 345-354 (1989; Zbl 0675.46006)]. The authors calculate the \(\lambda\)-function for the space of real-valued 2-homogeneous polynomials on the real space \(\ell^2\). Reviewer: S.V.Kislyakov (St.Peterburg) MSC: 46G25 (Spaces of) multilinear mappings, polynomials 46B20 Geometry and structure of normed linear spaces 46E15 Banach spaces of continuous, differentiable or analytic functions Keywords:extreme points; \(\lambda\)-property; convexity; extreme point structure; 2-homogeneous polynomials Citations:Zbl 0675.46006 PDF BibTeX XML Cite \textit{Y. S. Choi} and \textit{S. G. Kim}, J. Inequal. Appl. 3, No. 3, 303--311 (1999; Zbl 0946.46039) Full Text: DOI EuDML OpenURL