×

zbMATH — the first resource for mathematics

Parusinski’s “Key Lemma” via algebraic geometry. (English) Zbl 0956.32009
Summary: The following “key lemma” plays an important role in the work by Parusiński on the existence of Lipschitz stratifications in the class of semianalytic sets: For any positive integer \(n\), there is a finite set of homogeneous symmetric polynomials \(W_1, \dots ,W_N\) in \(Z[x_1,\dots,x_n]\) and a constant \(M>0\) such that \[ |dx_i/x_i|\leq M \max_{j = 1, \dots, N} |dW_j/W_j|, \] as densely defined functions on the tangent bundle of \({\mathbb C}^n\). We give a new algebro-geometric proof of this result.

MSC:
32B20 Semi-analytic sets, subanalytic sets, and generalizations
14P15 Real-analytic and semi-analytic sets
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] N. Bourbaki, Éléments de mathématique. 23. Première partie: Les structures fondamentales de l’analyse. Livre II: Algèbre. Chapitre 8: Modules et anneaux semi-simples, Actualités Sci. Ind. no. 1261, Hermann, Paris, 1958 (French). · Zbl 0102.27203
[2] Susan Montgomery, Fixed rings of finite automorphism groups of associative rings, Lecture Notes in Mathematics, vol. 818, Springer, Berlin, 1980. · Zbl 0449.16001
[3] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. · Zbl 0797.14004
[4] Adam Parusiński, Lipschitz properties of semi-analytic sets, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 4, 189 – 213 (English, with French summary). · Zbl 0631.32006
[5] Z. Reichstein and B. Youssin, Essential dimensions of algebraic groups and a resolution theorem for \(G\)-varieties, with an appendix by J. Kollár and E. Szabó, preprint. Available at http://ucs.orst.edu/\(\tilde{\;}\)reichstz/pub.html. · Zbl 1044.14023
[6] I. R. Shafarevich, Basic algebraic geometry, Springer-Verlag, New York-Heidelberg, 1974. Translated from the Russian by K. A. Hirsch; Die Grundlehren der mathematischen Wissenschaften, Band 213. · Zbl 0284.14001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.