×

zbMATH — the first resource for mathematics

Commutator characterization of periodic pseudodifferential operators. (English) Zbl 0976.47029
Let \(M\) be a closed smooth orientable manifold and \(\mathbb{T}^n\) be the torus \(\mathbb{R}^n/\mathbb{Z}^n\). The set of pseudo-differential operators of order \(m\in\mathbb{R}\) on \(M\), in the Hörmander sense, is denoted by \(\Psi^m(M)\). Let \(\text{Op }S^m(\mathbb{T}^n)\) be the set of periodic pseudodifferential operators, in the Agranovich sense. The aim of the paper is a proof of the equality \(\Psi^m(\mathbb{T}^n)= \text{Op }S^m(\mathbb{T}^n)\), by means of commutators. The main step in the proof is a global commutator characterization of \(\Psi^m(M)\). The paper is self-contained: at the beginning of each section, the author clearly reviews definitions and calculus of the pseudodifferential operators which are involved in the section.

MSC:
47G30 Pseudodifferential operators
58J40 Pseudodifferential and Fourier integral operators on manifolds
47B47 Commutators, derivations, elementary operators, etc.
47L80 Algebras of specific types of operators (Toeplitz, integral, pseudodifferential, etc.)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Agranovich,M. S.: On elliptic pseudodzfferentiaL operators on a closed curve. Trans. Moscow Math. Soc. 47 (1985), 23 - 74. · Zbl 0584.35078
[2] Agranovich, M. S.: Elliptic operators on closed manifolds (in Russian). Itogi Nauki i Tehniki, Ser. Sovrem. Probi. Mat. Fund. Napravt. 63 (1990), 5 - 129; English translation in: Encyclopaedia Math. Sd. 63 (1994), 1 - 130. · Zbl 0802.58050
[3] Beals, R.: Characterization of pseudo-differential operators and applications. Duke Math. J. 44 (1977), 45 - 57. · Zbl 0353.35088 · doi:10.1215/S0012-7094-77-04402-7
[4] Calderón, A. P.: Commutators of singular integral operators. Proc. Nat. Acad. Sd. USA 53 (1965), 1092 - 1099. · Zbl 0151.16901 · doi:10.1073/pnas.53.5.1092
[5] Coifman, R. R. and Y. Meyer: Au-deja des opérateurs pseudo- différentiels. Astérisque 57 (1978), 1 - 185. · Zbl 0483.35082
[6] Cordes, H. 0.: On pseudodifferential operators and smoothness of special Lie group rep- resentations. Manuscripta Math. 28 (1979), 51 - 69. · Zbl 0415.35083 · doi:10.1007/BF01647964 · eudml:154628
[7] Dunau, J.: Fonctions dun operateur elliptique sur une varsete cornpacte. J. Math. Pures et AppI. 56 (1977), 367 - 391. · Zbl 0323.58017
[8] Hille, E. and R. S. Phillips: Functional Analysis and Semi-Groups. Providence, Rhode Island: Amer. Math. Soc. 1981.
[9] Hirsch, M. W.: Differential Topology. New York: Springer-Verlag 1976. · Zbl 0356.57001 · doi:10.1007/978-1-4684-9449-5
[10] Hörmander, L.: The Analysis of Linear Partial Differential Operators. Vol. III. Berlin et al.: Springer-Verlag 1985.
[11] Lions, J. L. and E. Magenes: Non-Homogeneous Boundary Value Problems and Applica- tions. Vol. 1. Berlin et al.: Springer-Verlag 1972.
[12] Melo, S. T.: Characterization of pseudodifferential operators on the circle. Proc. Amer. Math. Soc. 125 (1997), 5, 1407 - 1412. · Zbl 0870.47030 · doi:10.1090/S0002-9939-97-04016-1
[13] Saranen, J. and W. L. Wendland: The Fourier series representation of pseudodifferential operators on closed curves. Complex Variables: Theory AppI. 8 (1987), 55 - 64. · Zbl 0577.47046
[14] Stein, E. M.: Harmonic Analysis. Real- Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton: Princeton Univ. Press 1993. · Zbl 0821.42001
[15] Taylor, M. E.: Pseudodifferential operators. Princeton: Univ. Press 1981. · Zbl 0453.47026
[16] Taylor, M. E.: Beals-Cordes-type characterizations of pseudodifferential operators. Proc. Amer. Math. Soc. 125 (1997), 1711 - 1716. · Zbl 0868.35149 · doi:10.1090/S0002-9939-97-03753-2
[17] Treves, F.: Introduction to Pseudodifferential and Fourier Integral Operators. New York: Plenum Press 1980.
[18] Turunen, V.: Symbol Analysis of Periodic Pseudodifferential Operators. Master’s Thesis. Espoo: Helsinki Univ. Techn. 1997. · Zbl 0899.47039 · doi:10.4171/ZAA/805
[19] Turunen, V. and C. Vainikko: On symbol analysis of periodic pseudodifferential operators. Z. Anal. Anw. 17 (1998), 9 - 22. 1996. · Zbl 0899.47039 · doi:10.4171/ZAA/805
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.