French, Donald A.; Larsson, Stig; Nochetto, Ricardo H. Pointwise a posteriori error analysis for an adaptive penalty finite element method for the obstacle problem. (English) Zbl 0980.65118 Comput. Methods Appl. Math. 1, No. 1, 18-38 (2001). Finite element approximations based on a penalty formulation of the elliptic obstacle problem are analyzed in the maximum norm. A posteriori error estimates, which involve a residual of the approximation and a spatially variable penalty parameter, are derived in the cases of both smooth and rough obstacles. An adaptive algorithm is suggested and implemented in one dimension.Main result: The error bound in the maximum norm of the form \[ \|U_\varepsilon- u_\varepsilon\|_{L_\infty(\Omega)}\leq C|\log h_{\max}|\|h^2 R_\infty\|_{L_\infty(\Omega)} \] and the penalty error in the case of a smooth obstacle function \[ \Psi\in W^2_\infty(\Omega):\|u- u_\varepsilon\|_{L_\infty(\Omega)}\leq \|\varepsilon(f+ \Delta\Psi)\|_{L_\infty(\Omega)}, \] are proposed. Reviewer: J.Lovíšek (Bratislava) Cited in 6 Documents MSC: 65N15 Error bounds for boundary value problems involving PDEs 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 35J85 Unilateral problems; variational inequalities (elliptic type) (MSC2000) Keywords:finite element method; elliptic obstacle problem; a posteriori error estimate; maximum norm; penalty method; algorithm PDF BibTeX XML Cite \textit{D. A. French} et al., Comput. Methods Appl. Math. 1, No. 1, 18--38 (2001; Zbl 0980.65118) Full Text: DOI EuDML EMIS OpenURL