# zbMATH — the first resource for mathematics

The $$d$$-dimensional Gauss transformation: Strong convergence and Lyapunov exponents. (English) Zbl 1029.11037
Let $$\Delta^d=\{(\omega_1,\dots,\omega_d)\in [0,1]^d: \omega_1\geq\cdots\geq\omega_d\}$$ and define the $$d$$-dimensional ordered Jacobi-Perron algorithm (JPA) $$T:\Delta^d\to\Delta^d$$ by $T(\omega_1,\dots,\omega_d)=\begin{cases} (\{\frac 1{\omega_1}\},\frac{\omega_2}{\omega_1}, \dots,\frac{\omega_d}{\omega_1})& \text{if } \{\frac 1{\omega_1}\} >\frac{\omega_2}{\omega_1};\\ (\frac{\omega_2}{\omega_1},\dots, \frac{\omega_j}{\omega_1},\{\frac 1{\omega_1}\}, \frac{\omega_{j+1}}{\omega_1},\dots, \frac{\omega_d}{\omega_1})& \text{if } \frac{\omega_j}{\omega_1} >\{\frac 1{\omega_1}\}>\frac{\omega_{j+1}}{\omega_1};\\ (\frac{\omega_2}{\omega_1},\dots, \frac{\omega_d}{\omega_1}, \{\frac 1{\omega_1}\}) & \text{if } \frac{\omega_d}{\omega_1} >\{\frac 1{\omega_1}\}, \end{cases}$ where $$\{x\}$$ denotes the fractional part of $$x$$. This is also called the Gauss algorithm, and it is equivalent to Brun’s algorithm and to the modified JPA.
It is proved that the three-dimensional Gauss algorithm is strongly convergent almost everywhere on $$X$$. The proof involves the computer assisted estimation of the largest Lyapunov exponent of a cocycle associated to the algorithm.
Such a numerical scheme was used by S. Ito, M. Keane and M. Ohtsuki [Ergodic Theory Dyn. Syst. 13, 319-334 (1993; Zbl 0846.28005)] to prove almost everywhere strong convergence of the two-dimensional modified Jacobi-Perron algorithm. The authors discuss the scheme in arbitrary dimension to show how the error terms can be estimated explicitly. By this computer assisted proof, they describe how to reduce the problem to a finite number of calculations.
Reviewer’s remark: Numerical results which prove almost everywhere strong convergence of the three-dimensional Gauss algorithm have appeared in the same journal [D. M. Hardcastle, Exp. Math. 11, 131-141 (2002; Zbl 1022.11034)].

##### MSC:
 11J70 Continued fractions and generalizations 11K50 Metric theory of continued fractions
Full Text:
##### References:
  Arnoux P., Ann. Scient. Ec. Norm. Sup. 26 pp 645– (1993)  Broise-Alamichel A., Annales de I’lnstitut Fourier 51 pp 565– (2001) · Zbl 1012.11060 · doi:10.5802/aif.1832  Brun V., 13 ième Congre. Math. Scand., Helsinki pp 45– (1957)  Fujita T., Ergod. Th. and Dyn. Sys. 16 pp 1345– (1996) · Zbl 0868.28008 · doi:10.1017/S0143385700010063  Hardcastle D. M., Ergod. Th. and Dyn. Sys. 20 pp 1711– (2000) · Zbl 0977.11031 · doi:10.1017/S014338570000095X  Hardcastle D. M., Commun. Math. Phys. 215 pp 487– (2001) · Zbl 0984.11040 · doi:10.1007/s002200000290  Hardcastle D. M., Experimental Mathematics 11 (1) pp 131– (2002)  Ito S., Ergod. Th. and Dyn. Sys. 13 pp 319– (1993)  Jacobi C. G. J., J. Reine Angew. Math 69 pp 29– (1868) · JFM 01.0062.01 · doi:10.1515/crll.1868.69.29  Khanin K., Talk at the International Workshop on Dynamical Systems (1992)  Kingman J. F. C., J. Royal Stat. Soc. B 30 pp 499– (1968)  Lagarias J. C., Mh. Math. 115 pp 299– (1993) · Zbl 0790.11059 · doi:10.1007/BF01667310  Meester R., Ergod. Th. and Dyn. Sys. 19 pp 1077– (1999) · Zbl 1044.11074 · doi:10.1017/S0143385799133960  Paley R. E. A. C., Proc. Cambridge Philos. Soc 26 pp 127– (1930) · JFM 56.1053.06 · doi:10.1017/S0305004100015371  Perron O., Math. Ann. 64 pp 1– (1907) · JFM 38.0262.01 · doi:10.1007/BF01449880  Podsypanin E. V., Zap. Naucn. Sem. Leningrad Otdel. Mat. Inst. Steklov 67 pp 184– (1977)  Schweiger F., Ergodic Theory, Proceedings Oberwolfach, Germany 1978, Lecture Notes in Mathematics 729 pp 199– (1979)  Schweiger F., Ergodic Theory of Fibred Systems and Metric Number Theory (1995) · Zbl 0819.11027  Schweiger, F. ”The exponent of convergence for the 2-dimensional Jacobi-Perron algorithm,”. Proceedings of the Conference on Analytic and Elementary Number Theory in Vienna 1996. Edited by: Nowak, W. G. and Schoissengeier, J. pp.207–213. [Schweiger 96] · Zbl 0879.11044  Selmer E., Nordisk Mat Tidskr. 9 pp 37– (1961)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.