×

The coordinatewise uniformly Kadec-Klee property in some Banach spaces. (Russian, English) Zbl 1033.46027

Sib. Mat. Zh. 44, No. 2, 454-458 (2003); translation in Sib. Math. J. 44, No. 2, 363-365 (2003).
Summary: We introduce a new property \(UKK_c\) for a Banach space and show that the following three properties are equivalent for an Orlicz sequence space: \(UKK_c\), \(H_c\), and \(\Phi\in\delta_2\). Besides, we prove that the direct Orlicz sums \(\bigl(\sum_{n=1}^{\infty}\oplus X_n\bigr)_{l_\Phi}\) and \(\bigl(\sum_{n=1}^{\infty}\oplus X_n\bigr)_{l_{(\Phi)}}\) possess the property \(H_c\) provided that each \(X_n\), \(n\in\mathbb N\), possesses the property \(H_c\) and \(\Phi\in\delta_2\).

MSC:

46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46B20 Geometry and structure of normed linear spaces
46A45 Sequence spaces (including Köthe sequence spaces)
PDF BibTeX XML Cite
Full Text: EuDML EMIS