Liu, Xinhe; Zhao, Xiuli; Ma, Jianmin \(C^m\) solutions of systems of finite difference equations. (English) Zbl 1036.39003 Int. J. Math. Math. Sci. 2003, No. 36, 2315-2326 (2003). Under certain conditions it is shown for given \(G\), \(H\) that the system \[ G(x, f(x),\dots, f(x+ n), g(x),\dots, g(x+ n))= 0, \]\[ H(x,g(x),\dots, g(x+ n), f(x),\dots, f(x+ n))= 0 \] has a unique solution \(f\), \(g\) in \(\mathbb{C}^m\). Reviewer: Lothar Berg (Rostock) MSC: 39A10 Additive difference equations 39A20 Multiplicative and other generalized difference equations Keywords:system of difference equations PDF BibTeX XML Cite \textit{X. Liu} et al., Int. J. Math. Math. Sci. 2003, No. 36, 2315--2326 (2003; Zbl 1036.39003) Full Text: DOI EuDML OpenURL