Cyclic presentations of the trivial group. (English) Zbl 1044.20016

Summary: We report on a computational group theory experiment involving a search for cyclic presentations of the trivial group. The list of such presentations obtained includes counterexamples to a conjecture of M. J. Dunwoody.


20F05 Generators, relations, and presentations of groups
68W30 Symbolic computation and algebraic computation
Full Text: DOI Euclid EuDML


[1] Baumslag G., ”On the Andrews–Curtis equivalence” (1999)
[2] Burns R. G., Bull. London Math. Soc. 25 (6) pp 513– (1993) · Zbl 0796.20022
[3] Cavicchioli A., ”On a conjecture of M. J. Dunwoody” (1999)
[4] Dunwoody M. J., Groups –Korea 1994 (Pusan, 1994) pp 47– (1995)
[5] Higman G., J. London Math. Soc. 26 pp 61– (1951) · Zbl 0042.02201
[6] Holt D. F., Groups and computation (New Brunswick, NJ, 1991) pp 113– (1993) · Zbl 0808.20008
[7] Johnson D. L., Topics in the theory of group presentations (1980) · Zbl 0437.20026
[8] Pride S. J., J. London Math. Soc. (2) 36 (2) pp 245– (1987) · Zbl 0633.20022
[9] Song H. J., ”Dunwoody 3-manifolds and (1, l)-decomposable knots” (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.