## The law of the iterated logarithm for weakly dependent Hilbert space valued random variables.(Russian, English)Zbl 1046.60023

Sib. Mat. Zh. 44, No. 6, 1407-1424 (2003); translation in Sib. Math. J. 44, No. 6, 1111-1126 (2003).
Let $$X_1, X_2, \dots$$ be a sequence of centered identically distributed random vectors in a separable Banach space $$B$$ with norm $$\| \cdot\|$$ and dual $$B^*$$. Say that $$\{X_n\}$$ satisfies the bounded law of the iterated logarithm if $\limsup_{n\to\infty}\frac{\| X_{1}+\cdots+X_{n}\| }{\sqrt{2n\log\log n}}<\infty \;\text{ a.s.}$ Let $$\varphi(n)$$ be the mixing coefficient $\varphi(n)=\sup\{| P(A/C)-P(A)| : k\in\mathbb N, \;C\in F_1^k,\;A\in F_{n+k}^\infty, \;P(C)>0\},$ where $$F_a^b$$ is the $$\sigma$$-algebra generated by the random variables $$X_a,\dots,X_b$$. The author considers the sequence of random vectors $$\{X_n\}$$ which satisfies the following conditions: $\begin{gathered} Ef(X_1)=0,\;Ef^2(X_1)<\infty\;\text{ for all }\;f\in B^*, \\ \sum_{k=1}^\infty\varphi^{1/\theta}(2^k)<\infty \;\text{ for some }\;\theta>3, \quad \lim_{n\to\infty}\frac{Ef^2(S_n)}{n}<\infty \;\text{ for all }\;f\in B^*. \end{gathered}$ Under these conditions, the author proves that $$\{X_n\}$$ satisfies the bounded law of the iterated logarithm if and only if $$E\| X_1\| ^2/ \log\log\| X_1\| )<\infty$$. Necessary and sufficient conditions are also given for the compact law of the iterated logarithm to be satisfied.

### MSC:

 60F05 Central limit and other weak theorems 60F20 Zero-one laws
Full Text: