zbMATH — the first resource for mathematics

Higher dimensional polarized varieties with non-integral nefvalue. (English) Zbl 1053.14061
Let \(X\) be an \(n\)-dimensional projective variety with terminal, Gorenstein, \(\mathbb{Q}\)-factorial singularities, and let \(L\) be an ample line bundle on \(X\). If \(K_{X}\) is not nef, then by the Kawamata rationality theorem \(\tau(L)=\text{min}\{ t\in R\;| \;\text{}K_{X}+tL\) is nef

14N30 Adjunction problems
14C20 Divisors, linear systems, invertible sheaves
14J10 Families, moduli, classification: algebraic theory
Full Text: DOI EuDML
[1] Math. Ann. 300 pp 669– (1994)
[2] Andreatta M., J. Algebraic Geom. 7 pp 253– (1998)
[3] Beltrametti M. C., J. Math. Soc. Japan 45 pp 557– (1993)
[4] M. C. Beltrametti, A. J. Sommese, The adjunction theory of complex projective varieties. de Gruyter 1995. · Zbl 0845.14003
[5] T. Fujita, Classification theories of polarized varieties. Cambridge Univ. Press 1990. · Zbl 0743.14004
[6] T. Fujita, On singular del Pezzo varieties. In: Algebraic geometry (L’Aquila, 1988), volume 1417 of Lecture Notes in Math., 117-128, Springer 1990.
[7] Manuscripta Math. 76 pp 59– (1992)
[8] Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the minimal model problem. In: Algebraic geometry.Sendai, 1985, volume 10 of Adv. Stud. Pure Math., 283-360, North-Holland 1987. · Zbl 0672.14006
[9] Mukai S., Proc. Nat. Acad. Sci. U.S.A. 86 pp 3000– (1989)
[10] S. Mukai, New classification of Fano threefolds and manifolds of coindex 3. Preprint 1988.
[11] J. Reine Angew. Math. 467 pp 51– (1995)
[12] J. Math. Soc. Japan 49 pp 633– (1997)
[13] Proc. Amer. Math. Soc. 129 pp 1907– (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.