×

Nonpositive immersions, sectional curvature, and subgroup properties. (English) Zbl 1059.20041

Summary: This announcement describes research concerning local quasiconvexity, coherence, compact cores, and local indicability for fundamental groups of certain \(2\)-complexes.

MSC:

20F67 Hyperbolic groups and nonpositively curved groups
20F05 Generators, relations, and presentations of groups
57M05 Fundamental group, presentations, free differential calculus
57M07 Topological methods in group theory
57M20 Two-dimensional complexes (manifolds) (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] W. Ballmann and S. Buyalo, Nonpositively curved metrics on 2-polyhedra, Math. Z. 222 (1996), no. 1, 97 – 134. · Zbl 0843.53036
[2] Gilbert Baumslag, Some problems on one-relator groups, Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973) Springer, Berlin, 1974, pp. 75 – 81. Lecture Notes in Math., Vol. 372.
[3] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. · Zbl 0988.53001
[4] S. D. Brodskiĭ, Equations over groups and groups with one defining relation, Uspekhi Mat. Nauk 35 (1980), no. 4(214), 183 (Russian).
[5] S. D. Brodskiĭ, Equations over groups, and groups with one defining relation, Sibirsk. Mat. Zh. 25 (1984), no. 2, 84 – 103 (Russian).
[6] R. G. Burns and V. W. D. Hale, A note on group rings of certain torsion-free groups, Canad. Math. Bull. 15 (1972), 441 – 445. · Zbl 0244.16006
[7] J. M. Corson and B. Trace, Diagrammatically reducible complexes and Haken manifolds, J. Austral. Math. Soc. Ser. A 69 (2000), no. 1, 116 – 126. · Zbl 0964.57003
[8] Warren Dicks, Equivalence of the strengthened Hanna Neumann conjecture and the amalgamated graph conjecture, Invent. Math. 117 (1994), no. 3, 373 – 389. · Zbl 0809.05055
[9] D. B. A. Epstein and R. C. Penner, Euclidean decompositions of noncompact hyperbolic manifolds, J. Differential Geom. 27 (1988), no. 1, 67 – 80. · Zbl 0611.53036
[10] Mark Feighn and Michael Handel, Mapping tori of free group automorphisms are coherent, Ann. of Math. (2) 149 (1999), no. 3, 1061 – 1077. · Zbl 0938.20022
[11] J. Fischer, A. Karrass, and D. Solitar, On one-relator groups having elements of finite order, Proc. Amer. Math. Soc. 33 (1972), 297 – 301. · Zbl 0242.20035
[12] S. M. Gersten, Reducible diagrams and equations over groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 15 – 73. · Zbl 0644.20024
[13] James Howie, On pairs of 2-complexes and systems of equations over groups, J. Reine Angew. Math. 324 (1981), 165 – 174. · Zbl 0447.20032
[14] James Howie, On locally indicable groups, Math. Z. 180 (1982), no. 4, 445 – 461. · Zbl 0471.20017
[15] James Howie, How to generalize one-relator group theory, Combinatorial group theory and topology (Alta, Utah, 1984) Ann. of Math. Stud., vol. 111, Princeton Univ. Press, Princeton, NJ, 1987, pp. 53 – 78. · Zbl 0632.20021
[16] Johannes Huebschmann, Aspherical 2-complexes and an unsettled problem of J. H. C. Whitehead, Math. Ann. 258 (1981/82), no. 1, 17 – 37. · Zbl 0458.57001
[17] Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin-New York, 1977. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89. · Zbl 0368.20023
[18] Wilhelm Magnus. Über diskontinuierliche Gruppen mit einer definierenden Relation (Der Freiheitssatz). J. Reine Angew. Math., 163:141-165, 1930. · JFM 56.0134.03
[19] Wilhelm Magnus. Das Identitätsproblem für Gruppen mit einer definierenden Relation. Math. Ann., 106:295-307, 1932. · JFM 58.0125.01
[20] Jonathan P. McCammond and Daniel T. Wise. Coherence, local quasiconvexity and the perimeter of \(2\)-complexes. Preprint, 1999. · Zbl 1087.20024
[21] Jonathan P. McCammond and Daniel T. Wise. Fans and ladders in small cancellation theory. Proc. London Math. Soc. (3), 84(3):599-644, 2002. · Zbl 1022.20012
[22] Walter D. Neumann, On intersections of finitely generated subgroups of free groups, Groups — Canberra 1989, Lecture Notes in Math., vol. 1456, Springer, Berlin, 1990, pp. 161 – 170.
[23] C. D. Papakyriakopoulos. On Dehn’s lemma and the asphericity of knots. Ann. of Math. (2), 66:1-26, 1957. · Zbl 0078.16402
[24] Frédéric Paulin, Constructions of hyperbolic groups via hyperbolizations of polyhedra, Group theory from a geometrical viewpoint (Trieste, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 313 – 372. · Zbl 0843.20032
[25] Stephen J. Pride, Star-complexes, and the dependence problems for hyperbolic complexes, Glasgow Math. J. 30 (1988), no. 2, 155 – 170. · Zbl 0684.20022
[26] E. Rips, Subgroups of small cancellation groups, Bull. London Math. Soc. 14 (1982), no. 1, 45 – 47. · Zbl 0481.20020
[27] G. P. Scott, Finitely generated 3-manifold groups are finitely presented, J. London Math. Soc. (2) 6 (1973), 437 – 440. · Zbl 0254.57003
[28] Allan J. Sieradski, A coloring test for asphericity, Quart. J. Math. Oxford Ser. (2) 34 (1983), no. 133, 97 – 106. · Zbl 0522.57003
[29] John R. Stallings, Adian groups and pregroups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 321 – 342.
[30] Daniel T. Wise. Coherence, local indicability, and non-positive immersions. Preprint 2002.
[31] Daniel T. Wise. Positive one-relator groups are coherent. Preprint 2002. · Zbl 1049.20018
[32] Daniel T. Wise. Sectional curvature and local quasiconvexity. Preprint 2002.
[33] Daniel T. Wise, Incoherent negatively curved groups, Proc. Amer. Math. Soc. 126 (1998), no. 4, 957 – 964. · Zbl 0913.20027
[34] Daniel T. Wise. A covering space with no compact core. Geom. Ded., 92(1):59-62, 2002. · Zbl 1004.57003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.