zbMATH — the first resource for mathematics

A non-abelian Seiberg-Witten invariant for integral homology 3-spheres. (English) Zbl 1065.57031
The author introduces quaternionic Seiberg-Witten equations on the spinor bundle coupled with the SU(2) bundle on an integral homology three sphere. To define the Seiberg-Witten invariant, he uses a novel perturbation which is not associated with the Chern-Simons-Dirac functional hence not suitable for the Seiberg-Witten-Floer homology. The invariant is independent of the orientation of the three-manifold and its linear combination with the SU(3)-Casson invariant of Boden-Herald gives a \({\mathbb Z}\) mod \(4{\mathbb Z}\) invariant for unoriented integral homology 3-spheres.

57R57 Applications of global analysis to structures on manifolds
57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
Full Text: DOI EMIS EuDML arXiv
[1] S Akbulut, J D McCarthy, Casson’s invariant for oriented homology 3-spheres, Mathematical Notes 36, Princeton University Press (1990) · Zbl 0695.57011
[2] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43 · Zbl 0297.58008
[3] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry II, Math. Proc. Cambridge Philos. Soc. 78 (1975) 405 · Zbl 0314.58016
[4] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry III, Math. Proc. Cambridge Philos. Soc. 79 (1976) 71 · Zbl 0325.58015
[5] H U Boden, C M Herald, The \(\mathrm{SU}(3)\) Casson invariant for integral homology 3-spheres, J. Differential Geom. 50 (1998) 147 · Zbl 0934.57013
[6] H U Boden, C M Herald, P Kirk, An integer valued \(\mathrm{SU}(3)\) Casson invariant, Math. Res. Lett. 8 (2001) 589 · Zbl 0991.57014
[7] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1990) · Zbl 0820.57002
[8] P M N Feehan, T G Leness, \(\mathrm PU(2)\) monopoles I: Regularity, Uhlenbeck compactness, and transversality, J. Differential Geom. 49 (1998) 265 · Zbl 0998.57057
[9] T Kato, Perturbation theory for linear operators, Grundlehren der Mathematischen Wissenschaften 132, Springer (1976) · Zbl 0342.47009
[10] H B Lawson Jr., M L Michelsohn, Spin geometry, Princeton Mathematical Series 38, Princeton University Press (1989) · Zbl 0688.57001
[11] Y Lim, The equivalence of Seiberg-Witten and Casson invariants for homology 3-spheres, Math. Res. Lett. 6 (1999) 631 · Zbl 0948.57007
[12] Y Lim, Seiberg-Witten invariants for 3-manifolds in the case \(b_1=0\) or 1, Pacific J. Math. 195 (2000) 179 · Zbl 1015.57022
[13] Y Lim, Seiberg-Witten moduli spaces for 3-manifolds with cylindrical-end \(T^2\times\mathbbR^+\), Commun. Contemp. Math. 2 (2000) 461 · Zbl 0970.57017
[14] C H Taubes, Casson’s invariant and gauge theory, J. Differential Geom. 31 (1990) 547 · Zbl 0702.53017
[15] K K Uhlenbeck, Connections with \(L^p\) bounds on curvature, Comm. Math. Phys. 83 (1982) 31 · Zbl 0499.58019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.