×

zbMATH — the first resource for mathematics

Multigraded regularity, \(a^{*}\)-invariant and the minimal free resolution. (English) Zbl 1142.13010
The notion of Castelnuovo–Mumford regularity of \(\mathbb{Z}\)-graded modules has been extended to multigraded modules over \({\mathbb Z}^k\)-graded rings in two ways: as the multigraded regularity (a set defined by the vanishing of multigraded pieces of local cohomology modules) by D. Maclagan and G. Smith [J. Reine Angew. Math. 571, 179–212 (2004; Zbl 1062.13004)] and as the resolution regularity vector, defined by the multi-degrees in a minimal free resolution of the module by J. Sidman and A. van Tuyl [Beitr. Algebra Geom. 47, No. 1, 67–87 (2006; Zbl 1095.13012)].
This paper investigates the relationship between these two notions and provides a lower and an upper bound containment for multigraded regularity in terms of the resolution regularity vector and other \(\mathbb{Z}\)-graded invariants. The notion of the \(a^{*}\)-invariant is generalized to multigraded modules in different ways: as a set and a vector and is used to examine the vanishing of multigraded pieces of local cohomology modules with respect to different multigraded ideals.

MSC:
13D02 Syzygies, resolutions, complexes and commutative rings
13D45 Local cohomology and commutative rings
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aramova, A.; Crona, K.; De Negri, E., Bigeneric initial ideal, diagonal subalgebras and bigraded Hilbert functions, J. pure appl. algebra, 150, 215-235, (2000) · Zbl 0995.13011
[2] Brodmann, M.; Sharp, R., Local cohomology, (1998), Cambridge University Press · Zbl 0903.13006
[3] Cutkosky, S.D.; Herzog, J.; Trung, N.V., Asymptotic behavior of the castelnuovo – mumford regularity, Compos. math., 118, 243-261, (1999) · Zbl 0974.13015
[4] Eisenbud, D.; Goto, S., Linear free resolutions and minimal multiplicity, J. algebra, 88, 89-133, (1984) · Zbl 0531.13015
[5] Goto, S.; Watanabe, K.I., On graded rings I, J. math. soc. Japan, 30, 2, 179-213, (1978) · Zbl 0371.13017
[6] Grothendieck, A.; Dieudonné, J., Eléments de géometric algébrique II, Publ. math. inst. hautes études sci., 8, (1961)
[7] Hà, Huy Tài, On the Rees algebra of certain codimension two perfect ideals, Manuscripta math., 107, 479-501, (2002) · Zbl 0997.13002
[8] Hà, Huy Tài, Projective embeddings of projective schemes blown up at subschemes, Math. Z., 246, 1-2, 111-124, (2004) · Zbl 1058.14026
[9] Hà, Huy Tài; Strunk, B., Minimal free resolutions and asymptotic behavior of multigraded regularity, preprint, arXiv: · Zbl 1184.13038
[10] Hà, Huy Tài; Trung, N.V., Asymptotic behavior of arithmetically cohen – macaulay blow-ups, Trans. amer. math. soc., 357, 9, 3655-3672, (2005) · Zbl 1077.14062
[11] Hà, Huy Tài; Van Tuyl, A., The regularity of points in multi-projective spaces, J. pure appl. algebra, 187, 1-3, 153-167, (2004) · Zbl 1036.14024
[12] Hartshorne, R., Algebraic geometry, Grad. texts in math., vol. 52, (1977), Springer-Verlag · Zbl 0367.14001
[13] Hoffman, J.W.; Wang, H., Castelnuovo – mumford regularity in biprojective spaces, Adv. geom., 4, 4, 513-536, (2004) · Zbl 1063.13001
[14] Hoffman, J.W.; Wang, H., Regularity and resolutions for multigraded modules, preprint, arXiv: · Zbl 1145.13008
[15] Hyry, E., The diagonal subring and the cohen – macaulay property of a multigraded ring, Trans. amer. math. soc., 351, 6, 2213-2232, (1999) · Zbl 0916.13005
[16] Maclagan, D.; Smith, G.G., Multigraded castelnuovo – mumford regularity, J. reine angew. math., 571, 179-212, (2004) · Zbl 1062.13004
[17] Maclagan, D.; Smith, G.G., Uniform bounds on multigraded regularity, J. algebraic geom., 14, 1, 137-164, (2005) · Zbl 1070.14006
[18] Mumford, D., Lectures on curves on an algebraic surface, (1966), Princeton University Press Princeton, NJ · Zbl 0187.42701
[19] Römer, T., Homological properties of bigraded regularity, Illinois J. math., 45, 1361-1376, (2001) · Zbl 1094.13525
[20] Sharp, R., Bass numbers in the graded case, a-invariant formula, and an analogue of Falting’s annihilator theorem, J. algebra, 222, 1, 246-270, (1999) · Zbl 0947.13001
[21] Sidman, J.; Van Tuyl, A., Multigraded regularity: syzygies and fat points, Beiträge algebra geom., 47, 67-87, (2006) · Zbl 1095.13012
[22] Sidman, J.; Van Tuyl, A.; Wang, H., Multigraded regularity: coarsenings and resolutions, J. algebra, 301, 2, 703-727, (2006) · Zbl 1113.14034
[23] Trung, N.V., The largest non-vanishing degree of graded local cohomology modules, J. algebra, 215, 2, 481-499, (1999) · Zbl 0941.13002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.