×

zbMATH — the first resource for mathematics

Constructing canonical bases of quantized enveloping algebras. (English) Zbl 1116.17304
Summary: An algorithm for computing the elements of a given weight of the canonical basis of a quantized enveloping algebra is described. Subsequently, a similar algorithm is presented for computing the canonical basis of a finite-dimensional module.

MSC:
17B37 Quantum groups (quantized enveloping algebras) and related deformations
68W30 Symbolic computation and algebraic computation
Software:
GAP; QuaGroup
PDF BibTeX XML Cite
Full Text: DOI Euclid EuDML
References:
[1] Berenstein A., Invent. Math. 143 (1) pp 77– (2001) · Zbl 1061.17006 · doi:10.1007/s002220000102
[2] Bourbaki N., Groupes et Algèbres de Lie (1968) · Zbl 0186.33001
[3] Carter R. W., Algebraic groups and Lie groups pp 61– (1997)
[4] du Cloux F., Appl. Algebra Engrg. Comm. Comput. 7 (3) pp 211– (1996) · doi:10.1007/BF01190330
[5] Frenkel I. B., Transform. Groups 3 (4) pp 321– (1998) · Zbl 0918.17012 · doi:10.1007/BF01234531
[6] GAP – Groups, Algorithms, and Programming, Version 4.2 (2000)
[7] de Graaf W. A., J. Symbolic Comput. 32 (5) pp 475– (2001) · Zbl 1032.17024 · doi:10.1006/jsco.2001.0479
[8] de Graaf W. A., QuaGroup a GAP share package (2001)
[9] Jantzen J. C., Lectures on Quantum Groups, volume 6 of Graduate Studies in Mathematics. (1996) · Zbl 0842.17012
[10] Kashiwara M., Lie algebras and their representations (Seoul, 1995) pp 177– (1996) · doi:10.1090/conm/194/02393
[11] Leclerc B., Intemat. J. Algebra Comput. 10 (2) pp 191– (2000) · Zbl 1040.17011 · doi:10.1142/S0218196700000042
[12] Littelmann P., Ann. of Math. (2) 142 (3) pp 499– (1995) · Zbl 0858.17023 · doi:10.2307/2118553
[13] Littelmann P., Transform. Groups 3 (2) pp 145– (1998) · Zbl 0908.17010 · doi:10.1007/BF01236431
[14] Lusztig G., J. Amer. Math. Soc. 3 (2) pp 447– (1990) · doi:10.1090/S0894-0347-1990-1035415-6
[15] Lusztig G., New developments in Lie theory and their applications (Córdoba, 1989) pp 49– (1992) · doi:10.1007/978-1-4612-2978-0_3
[16] Lusztig G., Introduction to quantum groups. (1993) · Zbl 0788.17010
[17] Lusztig G., Quantum deformations of algebras and their representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992) pp 117– (1993)
[18] Lusztig G., Adv. Math. 122 (2) pp 237– (1996) · Zbl 0861.17008 · doi:10.1006/aima.1996.0061
[19] Marsh R. J., J. Algebra 186 (3) pp 831– (1996) · Zbl 0874.17011 · doi:10.1006/jabr.1996.0398
[20] Xi N., Comm. Algebra 27 (11) pp 5703– (1999) · Zbl 0952.17009 · doi:10.1080/00927879908826784
[21] Xi N., J. Algebra 214 (1) pp 8– (1999) · Zbl 0967.17010 · doi:10.1006/jabr.1998.7688
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.