Event and apparent horizon finders for \(3+1\) numerical relativity. (English) Zbl 1116.83001

Summary: Event and apparent horizons are key diagnostics for the presence and properties of black holes. In this article I review numerical algorithms and codes for finding event and apparent horizons in numerically-computed spacetimes, focusing on calculations done using the \(3+1\) ADM formalism. The event horizon of an asymptotically-flat spacetime is the boundary between those events from which a future-pointing null geodesic can reach future null infinity and those events from which no such geodesic exists. The event horizon is a (continuous) null surface in spacetime. The event horizon is defined nonlocally in time: it is a global property of the entire spacetime and must be found in a separate post-processing phase after all (or at least the nonstationary part) of spacetime has been numerically computed.
There are three basic algorithms for finding event horizons, based on integrating null geodesics forwards in time, integrating null geodesics backwards in time, and integrating null surfaces backwards in time. The last of these is generally the most efficient and accurate.
In contrast to an event horizon, an apparent horizon is defined locally in time in a spacelike slice and depends only on data in that slice, so it can be (and usually is) found during the numerical computation of a spacetime. A marginally outer trapped surface (MOTS) in a slice is a smooth closed 2-surface whose future-pointing outgoing null geodesics have zero expansion Theta. An apparent horizon is then defined as a MOTS not contained in any other MOTS. The MOTS condition is a nonlinear elliptic partial differential equation (PDE) for the surface shape, containing the ADM 3-metric, its spatial derivatives, and the extrinsic curvature as coefficients. Most apparent horizon finders actually find MOTSs.
There are a large number of apparent horizon finding algorithms, with differing trade-offs between speed, robustness, accuracy, and ease of programming. In axisymmetry, shooting algorithms work well and are fairly easy to program. In slices with no continuous symmetries, spectral integral-iteration algorithms and elliptic-PDE algorithms are fast and accurate, but require good initial guesses to converge. In many cases, Schnetter’s pretracking algorithm can greatly improve an elliptic-PDE algorithm’s robustness. Flow algorithms are generally quite slow but can be very robust in their convergence. Minimization methods are slow and relatively inaccurate in the context of a finite differencing simulation, but in a spectral code they can be relatively faster and more robust.


83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
83-08 Computational methods for problems pertaining to relativity and gravitational theory
83C57 Black holes
83C75 Space-time singularities, cosmic censorship, etc.
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C10 Equations of motion in general relativity and gravitational theory
Full Text: DOI arXiv EuDML Link


[1] Abrahams, AM; Cook, GB; Shapiro, SL; Teukolsky, SA, Solving Einstein’s Equations for Rotating Spacetimes: Evolution of Relativistic Star Clusters, Phys. Rev. D, 49, 5153-5164, (1994)
[2] Abrahams, AM; Evans, CR, Trapping a Geon: Black Hole Formation by an Imploding Gravitational Wave, Phys. Rev. D, 46, r4117-r4121, (1992)
[3] Abrahams, AM; Heiderich, KH; Shapiro, SL; Teukolsky, SA, Vacuum initial data, singularities, and cosmic censorship, Phys. Rev. D, 46, 2452-2463, (1992)
[4] Alcubierre, M.; Brandt, S.; Brügmann, B.; Gundlach, C.; Massó, J.; Seidel, E.; Walker, P., Test-beds and applications for apparent horizon finders in numerical relativity, Class. Quantum Grav., 17, 2159-2190, (2000) · Zbl 0952.83006
[5] Alcubierre, M.; Brügmann, B.; Diener, P.; Guzmáan, FS; Hawke, I.; Hawley, S.; Herrmann, F.; Koppitz, M.; Pollney, D.; Seidel, E.; Thornburg, J., Dynamical evolution of quasi-circular binary black hole data, Phys. Rev. D, 72, 044004, (2005)
[6] Andersson, L., and Metzger, J., personal communication, (2007). Personal communication from Lars Andersson to Bela Sziláagyi.
[7] Anninos, P.; Bernstein, D.; Brandt, S.; Libson, J.; Massoó, J.; Seidel, E.; Smarr, LL; Suen, W-M; Walker, P., Dynamics of Apparent and Event Horizons, Phys. Rev. Lett., 74, 630-633, (1995)
[8] Anninos, P.; Camarda, K.; Libson, J.; Massó, J.; Seidel, E.; Suen, W-M, Finding apparent horizons in dynamic 3D numerical spacetimes, Phys. Rev. D, 58, 1-12, (1998)
[9] Anninos, P.; Daues, G.; Massó, J.; Seidel, E.; Suen, W-M, Horizon boundary conditions for black hole spacetimes, Phys. Rev. D, 51, 5562-5578, (1995)
[10] Ansorg, M., A double-domain spectral method for black hole excision data, Phys. Rev. D, 72, 1-10, (2005)
[11] Ansorg, M.; Brügmann, B.; Tichy, W., Single-domain spectral method for black hole puncture data, Phys. Rev. D, 70, 1-13, (2004)
[12] Ansorg, M.; Kleinwächter, A.; Meinel, R., Highly accurate calculation of rotating neutron stars: Detailed description of the numerical methods, Astron. Astrophys., 405, 711-721, (2003) · Zbl 1059.85002
[13] Ansorg, M.; Petroff, D., Black holes surrounded by uniformly rotating rings, Phys. Rev. D, 72, 024019, (2005)
[14] Arnowitt, R.; Deser, S.; Misner, CW; Witten, L. (ed.), The dynamics of general relativity, 227-265, (1962), New York, U.S.A.
[15] Ascher, U.M., Mattheij, R.M.M., and Russell, R.D., Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, (Prentice-Hall, Englewood Cliffs, U.S.A., 1988). · Zbl 0671.65063
[16] Ashtekar, A.; Beetle, C.; Fairhurst, S., Isolated horizons: a generalization of black hole mechanics, Class. Quantum Grav., 16, l1-l7, (1999) · Zbl 0947.83027
[17] Ashtekar, A.; Galloway, G., Some uniqueness results for dynamical horizons, Adv. Theor. Math. Phys., 9, 1-30, (2005) · Zbl 1100.83016
[18] Ashtekar, A.; Krishnan, B., Dynamical Horizons: Energy, Angular Momentum, Fluxes, and Balance Laws, Phys. Rev. Lett., 89, 1-4, (2002) · Zbl 1267.83023
[19] Ashtekar, A.; Krishnan, B., Dynamical horizons and their properties, Phys. Rev. D, 68, 1-25, (2003)
[20] Ashtekar, A., and Krishnan, B., “Isolated and Dynamical Horizons and Their Applications”, Living Rev. Relativity, 7, lrr-2004-10, 10, (2004). URL (cited on 09 January 2006): http://www.livingreviews.org/lrr-2004-10. · Zbl 1071.83036
[21] Baiotti, L.; Hawke, I.; Montero, PJ; Loftier, F.; Rezzolla, L.; Stergioulas, N.; Font, JA; Seidel, E., Three-dimensional relativistic simulations of rotating neutron star collapse to a Kerr black hole, Phys. Rev. D, 71, 024035, (2005)
[22] Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M., Curfman McInnes, L., Smith, B.F., and Zhang, H., “PETSc: Portable, Extensible Toolkit for Scientific Computation”, project homepage, Argonne National Laboratory. URL (cited on 09 January 2006): http://www.mcs.anl.gov/petsc.
[23] Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M., Curfman McInnes, L., Smith, B.F., and Zhang, H., PETSc Users Manual, ANL-95/11 — Revision 2.1.5, (Argonne National Laboratory, Argonne, U.S.A., 2003). URL (cited on 20 August 2003): http://www-unix.mcs.anl.gov/petsc/petsc-as/documentation/.
[24] Balay, S.; Gropp, WD; Curfman McInnes, L.; Smith, BF; Arge, E. (ed.); Bruaset, AM (ed.); Langtangen, HP (ed.), Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries, Proceedings of SciTools’ 96 Workshop, Oslo, Norway, Boston, U.S.A. · Zbl 0882.65154
[25] Bartnik, R., personal communication. Personal communication from Robert Bartnik to Carsten Gundlach.
[26] Baumgarte, TW; Cook, GB; Scheel, MA; Shapiro, SL; Teukolsky, SA, Implementing an apparent-horizon finder in three dimensions, Phys. Rev. D, 54, 4849-4857, (1996)
[27] Baumgarte, TW; Shapiro, SL, Numerical relativity and compact binaries, Phys. Rep., 376, 41-131, (2003) · Zbl 1010.85002
[28] Bernstein, D., Notes on the Mean Curvature Flow Method for Finding Apparent Horizons, (National Center for Supercomputing Applications, Urbana-Champaign, U.S.A., 1993).
[29] Bishop, NT, The Closed Trapped Region and the Apparent Horizon of Two Schwarzschild Black Holes, Gen. Relativ. Gravit., 14, 717-723, (1982) · Zbl 0491.53054
[30] Bishop, NT, The horizons of two Schwarzschild black holes, Gen. Relativ. Gravit., 16, 589-593, (1984) · Zbl 0535.70011
[31] Bishop, NT, The Event Horizons of Two Schwarzschild black holes, Gen. Relativ. Gravit., 20, 573-581, (1988)
[32] Bizoń, P.; Malec, E.; Ó Murchadha, N., Trapped Surfaces in Spherical Stars, Phys. Rev. Lett., 61, 1147-1150, (1988)
[33] Bonazzola, S.; Frieben, J.; Gourgoulhon, E.; Marck, J-A; Ilin, AV (ed.); Scott, LR (ed.), Spectral methods in general relativity — toward the simulation of 3D-gravitational collapse of neutron stars, Proceedings of the Third International Conference on Spectral and High Order Methods: Houston, Texas, June 5-9, 1995, Houston, U.S.A.
[34] Bonazzola, S.; Gourgoulhon, E.; Marck, J-A, Spectral methods in general relativistic astrophysics, J. Comput. Appl. Math., 109, 433-473, (1999) · Zbl 0961.85002
[35] Bonazzola, S.; Marck, J-A; Evans, CR (ed.); Finn, LS (ed.); Hobill, DW (ed.), Pseudo-Spectral Methods Applied to Gravitational Collapse, Proceedings of the International Workshop on Numerical Relativity, University of Illinois at Urbana-Champaign, USA, May 9-13, 1988, Cambridge, U.K.; New York, U.S.A.
[36] Booth, I., Black hole boundaries, Can. J. Phys., 83, 1073-1099, (2005)
[37] Boyd, J.P., Chebyshev and Fourier Spectral Methods, (Dover Publications, Mineola, U.S.A., 2001), 2nd edition. · Zbl 0994.65128
[38] Brankin, R.W., Gladwell, I., and Shampine, L.F., “RKSUITE: A Suite of Runge-Kutta Codes for the Initial Value Problem for ODEs”, other, Dept. of Mathematics, Southern Methodist University, Dallas, TX, (1992). URL (cited on 09 January 2006): http://www.netlib.org/ode/rksuite/. · Zbl 0850.65146
[39] Brent, R.P., Algorithms for Minimization Without Derivatives, (Dover Publications, Mineola, U.S.A., 2002). Reprint of 1973 original edition. · Zbl 1009.90133
[40] Brewin, LC, Is the Regge Calculus a Consistent Approximation to General Relativity?, Gen. Relativ. Gravit., 32, 897-918, (2000) · Zbl 0983.83009
[41] Brewin, LC; Gentle, AP, On the Convergence of Regge Calculus to General Relativity, Class. Quantum Grav., 18, 517-525, (2001) · Zbl 0971.83018
[42] Briggs, W.L., Henson, V.E., and McCormick, S.F., A Multigrid Tutorial, (SIAM, Philadelphia, U.S.A., 2000), 2nd edition. · Zbl 0958.65128
[43] Brill, DR; Lindquist, RW, Interaction Energy in Geometrostatics, Phys. Rev., 131, 471-476, (1963) · Zbl 0117.23604
[44] Caveny, S.A., Tracking Black Holes in Numerical Relativity: Foundations and Applications, Ph.D. Thesis, (University of Texas at Austin, Austin, U.S.A., 2002).
[45] Caveny, SA; Anderson, M.; Matzner, RA, Tracking Black Holes in Numerical Relativity, Phys. Rev. D, 68, 104009, (2003)
[46] Caveny, SA; Matzner, RA, Adaptive event horizon tracking and critical phenomena in binary black hole coalescence, Phys. Rev. D, 68, 104003-1-13, (2003)
[47] Choptuik, M.W., A Study of Numerical Techniques for Radiative Problems in General Relativity, Ph.D. Thesis, (University of British Columbia, Vancouver, Canada, 1986).
[48] Choptuik, MW; Evans, CR (ed.); Finn, LS (ed.); Hobill, DW (ed.), Experiences with an Adaptive Mesh Refinement Algorithm in Numerical Relativity, Proceedings of the International Workshop on Numerical Relativity, University of Illinois at Urbana-Champaign (Urbana-Champaign, Illinois, USA), May 9-13, 1988, Cambridge, U.K.; New York, U.S.A.
[49] Chruściel, PT; Galloway, GJ, Horizons Non-Differentiable on a Dense Set, Commun. Math. Phys., 193, 449-470, (1998) · Zbl 0924.53062
[50] Cook, G.B., Initial Data for the Two-Body Problem of General Relativity, Ph.D. Thesis, (University of North Carolina at Chapel Hill, Chapel Hill, U.S.A., 1990).
[51] Cook, GB; Abrahams, AM, Horizon Structure of Initial-Data Sets for Axisymmetric Two-Black-Hole Collisions, Phys. Rev. D, 46, 702-713, (1992)
[52] Cook, GB; York, JW, Apparent Horizons for Boosted or Spinning Black Holes, Phys. Rev. D, 41, 1077-1085, (1990)
[53] Curtis, AR; Reid, JK, The Choice of Step Lengths When Using Differences to Approximate Jacobian Matrices, J. Inst. Math. Appl., 13, 121-126, (1974) · Zbl 0273.65037
[54] Davis, T.A., “UMFPACK: unsymmetric multifrontal sparse LU factorization package”, project homepage, University of Florida (CISE). URL (cited on 6 January 2007): http://www.cise.ufl.edu/research/sparse/umfpack/.
[55] Davis, TA, Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software, 30, 196-199, (2004) · Zbl 1072.65037
[56] Davis, TA, A column pre-ordering strategy for the unsymmetric-pattern multifrontal method, ACM Trans. Math. Software, 30, 165-195, (2004) · Zbl 1072.65036
[57] Davis, TA; Duff, IS, An unsymmetric-pattern multifrontal method for sparse LU factorization, SIAM J. Matrix Anal. Appl., 18, 140-158, (1997) · Zbl 0884.65021
[58] Davis, TA; Duff, IS, A combined unifrontal/multifrontal method for unsymmetric sparse matrices, ACM Trans. Math. Software, 25, 1-19, (1999) · Zbl 0962.65027
[59] Dennis Jr, J.E., and Schnabel, R.B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, (SIAM, Philadelphia, U.S.A., 1996). · Zbl 0847.65038
[60] Diener, P., A New General Purpose Event Horizon Finder for 3D, Class. Quantum Grav., 20, 4901-4917, (2003) · Zbl 1170.83409
[61] Diener, P., personal communication, (2007).
[62] Diener, P.; Herrmann, F.; Pollney, D.; Schnetter, E.; Seidel, E.; Takahashi, R.; Thornburg, J.; Ventrella, J., Accurate Evolution of Orbiting Binary Black Holes, Phys. Rev. Lett., 96, 121101, (2006)
[63] Dreyer, O.; Krishnan, B.; Schnetter, E.; Shoemaker, D., Introduction to isolated horizons in numerical relativity, Phys. Rev. D, 67, 1-14, (2003)
[64] Fort, EC; Frankel, SP, Stability Conditions in the Numerical Treatment of Parabolic Differential Equations, Math. Tables Aids Comput., 7, 135-152, (1953) · Zbl 0053.26401
[65] Duff, I.S., Erisman, A.M., and Reid, J.K., Direct Methods for Sparse Matrices, (Oxford University Press, Oxford, U.K.; New York, U.S.A., 1986). · Zbl 0604.65011
[66] Dykema, P.G., The Numerical Simulation of Axially Symmetric Gravitational Collapse, Ph.D. Thesis, (University of Texas at Austin, Austin, U.S.A., 1980).
[67] Eardley, DM, Gravitational Collapse of Marginally Bound Spheroids: Initial Conditions, Phys. Rev. D, 12, 3072-3076, (1975)
[68] Eppley, K.R., The numerical evolution of the collision of two black holes, Ph.D. Thesis, (Princeton University, Princeton, U.S.A., 1975).
[69] Eppley, KR, Evolution of time-symmetric gravitational waves: Initial data and apparent horizons, Phys. Rev. D, 16, 1609-1614, (1977)
[70] Fornberg, B., A Practical Guide to Pseudospectral Methods, Cambridge Monographs on Applied and Computational Mathematics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1998). · Zbl 0912.65091
[71] Forsythe, G.E., Malcolm, M.A., and Moler, C.B., Computer Methods for Mathematical Computations, (Prentice-Hall, Englewood Cliffs, U.S.A., 1977). Related online version (cited on 09 January 2006): http://www.netlib.org/fmm/. · Zbl 0361.65002
[72] Gentle, AP, Regge Calculus: A Unique Tool for Numerical Relativity, Gen. Relativ. Gravit., 34, 1701-1718, (2002) · Zbl 1019.83006
[73] Gentle, AP; Miller, WA, A fully (3+1)-dimensional Regge calculus model of the Kasner cosmology, Class. Quantum Grav., 15, 389-405, (1998) · Zbl 0909.53058
[74] Goodale, T.; Allen, G.; Lanfermann, G.; Massó, J.; Radke, T.; Seidel, E.; Shalf, J.; Palma, JMLM (ed.); Dongarra, J. (ed.); Hernández, V. (ed.); Sousa, AA (ed.), The Cactus Framework and Toolkit: Design and Applications, 5th International Conference, Porto, Portugal, June 26-28, 2002, Berlin, Germany; New York, U.S.A.
[75] Gottlieb, D., and Orszag, S.A., Numerical Analysis of Spectral Methods: Theory and Applications, vol. 26 of Regional Conference Series in Applied Mathematics, (SIAM, Philadelphia, U.S.A., 1977). Based on a series of lectures presented at the NSF-CBMS regional conference held at Old Dominion University from August 2-6, 1976. · Zbl 0412.65058
[76] Gourgoulhon, E.; Jaramillo, JL, A 3+1 perspective on null hypersurfaces and isolated horizons, Phys. Rep., 423, 159-294, (2006)
[77] Grandclement, P.; Bonazzola, S.; Gourgoulhon, E.; Marck, J-A, A Multidomain Spectral Method for Scalar and Vectorial Poisson Equations with Noncompact Sources, J. Comput. Phys., 170, 231-260, (2001) · Zbl 0988.65108
[78] Grandclément, P.; Gourgoulhon, E.; Bonazzola, S., Binary black holes in circular orbits. II. Numerical methods and first results, Phys. Rev. D, 65, 1-18, (2002)
[79] Grayson, MA, The Heat Equation Shrinks Embedded Plane Curves to Round Points, J. Differ. Geom., 26, 285-314, (1987) · Zbl 0667.53001
[80] Gundlach, C., Pseudo-spectral apparent horizon finders: An efficient new algorithm, Phys. Rev. D, 57, 863-875, (1998)
[81] Hawking, SW; DeWitt, C. (ed.); DeWitt, BS (ed.), The Event Horizon, 1-56, (1973), New York, U.S.A.
[82] Hawking, S.W., and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K., 1973). · Zbl 0265.53054
[83] Hayward, SA, General laws of black hole dynamics, Phys. Rev. D, 49, 6467-6474, (1994)
[84] Hindmarsh, AC; Stepleman, RS (ed.); etal., ODEPACK, A Systematized Collection of ODE Solvers, Tenth IMACS World Congress on System Simulation and Scientific Computation, Montreal, Canada, August 8-13, 1982, Amsterdam, Netherlands; New York, U.S.A.
[85] Hochbruck, M.; Lubich, C.; Selhofer, H., Exponential Integrators for Large Systems of Differential Equations, SIAM J. Sci. Comput., 19, 1552-1574, (1998) · Zbl 0912.65058
[86] Hornung, RD; Kohn, SR, Managing application complexity in the SAMRAI object-oriented framework, Concurr. Comput. Pract. Exp., 14, 347-368, (2002) · Zbl 1008.68527
[87] Hornung, RD; Wissink, AM; Kohn, SR, Managing complex data and geometry in parallel structured AMR applications, Eng. Comput., 22, 181-195, (2006)
[88] Hughes, SA; Keeton, CR; Walker, P.; Walsh, KT; Shapiro, SL; Teukolsky, SA, Finding Black Holes in Numerical Spacetimes, Phys. Rev. D, 49, 4004-4015, (1994)
[89] Huq, M.F., Apparent Horizon Location in Numerical Spacetimes, Ph.D. Thesis, (The University of Texas at Austin, Austin, U.S.A., 1996).
[90] Huq, MF; Choptuik, MW; Matzner, RA, Locating Boosted Kerr and Schwarzschild Apparent Horizons, Phys. Rev. D, 66, 084024, (2002)
[91] Husa, S.; Winicour, J., Asymmetric merger of black holes, Phys. Rev. D, 60, 1-13, (1999)
[92] Kahaner, D., Moler, C.B., and Nash, S., Numerical Methods and Software, (Prentice Hall, Englewood Cliffs, U.S.A., 1989). Revised and (greatly) expanded edition of Forsythe, G.E. and Malcolm, M.A. and Moler, C.B, “Computer methods for mathematical computations”(1977). · Zbl 0744.65002
[93] Kemball, AJ; Bishop, NT, The numerical determination of apparent horizons, Class. Quantum Grav., 8, 1361-1367, (1991)
[94] Kershaw, DS, The Incomplete Cholesky-Conjugate Gradient Method for Interative Solution of Linear Equations, J. Comput. Phys., 26, 43-65, (1978) · Zbl 0367.65018
[95] Kidder, LE; Finn, LS, Spectral Methods for Numerical Relativity. The Initial Data Problem, Phys. Rev. D, 62, 084026, (2000)
[96] Kidder, LE; Scheel, MA; Teukolsky, SA; Carlson, ED; Cook, GB, Black hole evolution by spectral methods, Phys. Rev. D, 62, 084032, (2000)
[97] Kidder, L.E., Scheel, M.A., Teukolsky, S.A., and Cook, G.B., “Spectral Evolution of Einstein’s Equations”, Miniprogram on Colliding Black Holes: Mathematical Issues in Numerical Relativity, held at the Institute for Theoretical Physics, UC at Santa Barbara, 10-28 January 2000, conference paper, (2000).
[98] Kriele, M.; Hayward, SA, Outer trapped surfaces and their apparent horizon, J. Math. Phys., 38, 1593-1604, (1997) · Zbl 0877.53069
[99] Lehner, L.; Bishop, NT; Gómez, R.; Szilágyi, B.; Winicour, J., Exact solutions for the intrinsic geometry of black hole coalescence, Phys. Rev. D, 60, 1-10, (1999)
[100] Lehner, L., Gómez, R., Husa, S., Szilágyi, B., Bishop, N.T., and Winicour, J., “Bagels Form When Black Holes Collide”, institutional homepage, Pittsburgh Supercomputing Center. URL (cited on 09 January 2006): http://www.psc.edu/research/graphics/gallery/winicour.html.
[101] Leiler, G.; Rezzolla, L., On the iterated Crank-Nicolson method for hyperbolic and parabolic equations in numerical relativity, Phys. Rev. D, 73, 044001, (2006)
[102] Libson, J.; Massóo, J.; Seidel, E.; Suen, W-M; Jantzen, RT (ed.); Keiser, GM (ed.), A 3D Apparent Horizon Finder, Proceedings of the meeting, Stanford University, July 24-30, 1994, Singapore; River Edge, U.S.A.
[103] Libson, J.; Massó, J.; Seidel, E.; Suen, W-M; Walker, P., Event horizons in numerical relativity: Methods and tests, Phys. Rev. D, 53, 4335-4350, (1996)
[104] Lin, L.-M., and Novak, J., “Three-dimensional apparent horizon finder in LORENE”, personal communication, (2006). Personal communication from Lap-Ming Lin to Jonathan Thornburg.
[105] Lorensen, WE; Cline, HE, Marching cubes: A high resolution 3D surface construction algorithm, SIGGRAPH Comput. Graph., 21, 163-169, (1987)
[106] MacNeice, P.; Olson, KM; Mobarry, C.; Fainchtein, R.; Packer, C., PARAMESH: A parallel adaptive mesh refinement community toolkit, Computer Phys. Commun., 126, 330-354, (2000) · Zbl 0953.65088
[107] Madderom, P., “Incomplete LU-Decomposition — Conjugate Gradient”, unknown format, (1984). Fortran 66 subroutine.
[108] Matzner, RA; Seidel, E.; Shapiro, SL; Smarr, LL; Suen, W-M; Teukolsky, SA; Winicour, J., Geometry of a Black Hole Collision, Science, 270, 941-947, (1995)
[109] Metzger, J., Numerical computation of constant mean curvature surfaces using finite elements, Class. Quantum Grav., 21, 4625-4646, (2004) · Zbl 1060.53007
[110] Miller, MA, Regge Calculus as a Fourth Order Method in Numerical Relativity, Class. Quantum Grav., 12, 3037-3051, (1995) · Zbl 0842.53062
[111] Misner, CW; Sharp, DH, Relativistic Equations for Adiabatic, Spherically Symmetric Gravitational Collapse, Phys. Rev., 136, b571-b576, (1964) · Zbl 0129.41102
[112] Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, U.S.A., 1973).
[113] Nakamura, T.; Kojima, Y.; Oohara, K., A Method of Determining Apparent Horizons in Three-Dimensional Numerical Relativity, Phys. Lett. A, 106, 235-238, (1984)
[114] Oohara, K.; Sato, H. (ed.); Nakamura, T. (ed.), Apparent Horizon of Initial Data for Black Hole-Collisions, Proceedings of Yamada Conference XIV, Kyoto International Conference Hall, Japan, April 7-11, 1986, Singapore; Philadelphia, U.S.A.
[115] Oohara, K.; Nakamura, T.; Kojima, Y., Apparent Horizons of Time-Symmetric Initial Value for Three Black Holes, Phys. Lett. A, 107, 452-455, (1985)
[116] Osher, S.; Sethian, JA, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12-49, (1988) · Zbl 0659.65132
[117] Parashar, M.; Browne, JC; Baden, SB (ed.); Chrisochoides, NP (ed.); Gannon, DB (ed.); Norman, ML (ed.), System Engineering for High Performance Computing Software: The HDDA/DAGH Infrastructure for Implementation of Parallel Structured Adaptive Mesh Refinement, No. vol. 117, 1-18, (2000), New York, U.S.A.
[118] Pasch, E., The level set method for the mean curvature flow on\( (R^3,g),\) SFB 382 Reports, 63, (University of Tübingen, Tübingen, Germany, 1997). URL (cited on 09 January 2006): http://www.uni-tuebingen.de/uni/opx/reports.html.
[119] Petrich, LI; Shapiro, SL; Teukolsky, SA, Oppenheimer-Snyder Collapse with Maximal Time Slicing and Isotropic Coordinates, Phys. Rev. D, 31, 2459-2469, (1985)
[120] Pfeiffer, H.P., Initial Data for Black Hole Evolutions, Ph.D. Thesis, (Cornell University, Ithaca, U.S.A., 2003). Related online version (cited on 1 October 2006): http://arXiv.org/abs/gr-qc/0510016.
[121] Pfeiffer, H.P., personal communication, (2006).
[122] Pfeiffer, HP; Cook, GB; Teukolsky, SA, Comparing initial-data sets for binary black holes, Phys. Rev. D, 66, 1-17, (2002)
[123] Pfeiffer, HP; Kidder, LE; Scheel, MA; Teukolsky, SA, A multidomain spectral method for solving elliptic equations, Computer Phys. Commun., 152, 253-273, (2003) · Zbl 1196.65179
[124] Pfeiffer, HP; Teukolsky, SA; Cook, GB, Quasicircular orbits for spinning binary black holes, Phys. Rev. D, 62, 1-11, (2000)
[125] Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical Recipes, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1992), 2nd edition. · Zbl 0778.65003
[126] Pretorius, F.; Choptuik, MW, Adaptive Mesh Refinement for Coupled Elliptic-Hyperbolic Systems, J. Comput. Phys., 218, 246-274, (2006) · Zbl 1104.65092
[127] Pretorius, F.; Lehner, L., Adaptive mesh refinement for characteristic codes, J. Comput. Phys., 198, 10-34, (2004) · Zbl 1052.65090
[128] Regge, T., General Relativity without Coordinates, Nuovo Cimento A, 19, 558-571, (1961)
[129] Richtmyer, R.D., and Morton, K.W., Difference Methods for Initial-Value Problems, (Krieger, Malabar, U.S.A., 1994), 2nd edition. Reprinted second edition of 1967. · Zbl 0824.65084
[130] Saad, Y., Iterative Methods for Sparse Linear Systems, (SIAM, Philadelphia, U.S.A., 2003), 2nd edition. · Zbl 1031.65046
[131] Schnetter, E., “CarpetCode: A mesh refinement driver for Cactus”, project homepage, Center for Computation and Technology, Louisiana State University. URL (cited on 09 January 2006): http://www.carpetcode.org
[132] Schnetter, E., “A fast apparent horizon algorithm”, (2002). URL (cited on 09 January 2006): http://arXiv.org/abs/gr-qc/0206003.
[133] Schnetter, E., Finding Apparent Horizons and other Two-Surfaces of Constant Expansion, Class. Quantum Grav., 20, 4719-4737, (2003) · Zbl 1045.83044
[134] Schnetter, E.; Hawley, SH; Hawke, I., Evolutions in 3D numerical relativity using fixed mesh refinement, Class. Quantum Grav., 21, 1465-1488, (2004) · Zbl 1047.83002
[135] Schnetter, E.; Herrmann, F.; Pollney, D., Horizon Pretracking, Phys. Rev. D, 71, 044033, (2005)
[136] Schnetter, E.; Krishnan, B., Nonsymmetric trapped surfaces in the Schwarzschild Vaidya spacetimes, Phys. Rev. D, 73, 021502, (2006)
[137] Schnetter, E.; Krishnan, B.; Beyer, F., Introduction to Dynamical Horizons in numerical relativity, Phys. Rev. D, 74, 024028, (2006)
[138] Schroeder, M.R., Number Theory in Science and Communication: With Applications in Cryptography, Physics, Digital Information, Computing and Self-Similarity, vol. 7 of Springer Series in Information Sciences, (Springer, Berlin, Germany; New York, U.S.A., 1986), 2nd edition. · Zbl 0613.10001
[139] Seidel, E.; Suen, W-M, Towards a Singularity-Proof Scheme in Numerical Relativity, Phys. Rev. Lett., 69, 1845-1848, (1992)
[140] Shampine, L.F., and Gordon, M.K., Computer solution of Ordinary Differential Equations, (W.H. Freeman, San Francisco, U.S.A., 1975). · Zbl 0347.65001
[141] Shapiro, SL; Teukolsky, SA, Gravitational Collapse of Supermassive Stars to Black Holes: Numerical Solution of the Einstein Equations, Astrophys. J. Lett., 234, l177-l181, (1979)
[142] Shapiro, SL; Teukolsky, SA, Gravitational Collapse to Neutron Stars and Black Holes: Computer Generation of Spherical Spacetimes, Astrophys. J., 235, 199-215, (1980)
[143] Shapiro, SL; Teukolsky, SA, Relativistic stellar dynamics on the computer. I. Motivation and Numerical Method, Astrophys. J., 298, 34-57, (1985)
[144] Shapiro, SL; Teukolsky, SA, Relativistic stellar dynamics on the computer. II. Physical applications, Astrophys. J., 298, 58-79, (1985)
[145] Shapiro, SL; Teukolsky, SA, Collision of relativistic clusters and the formation of black holes, Phys. Rev. D, 45, 2739-2750, (1992) · Zbl 1232.83050
[146] Shibata, M., Apparent horizon finder for a special family of spacetimes in 3D numerical relativity, Phys. Rev. D, 55, 2002-2013, (1997)
[147] Shibata, M.; Uryū, K., Apparent Horizon Finder for General Three-Dimensional Spaces, Phys. Rev. D, 62, 087501, (2000)
[148] Shoemaker, D.M., Apparent Horizons in Binary Black Hole Spacetimes, Ph.D. Thesis, (The University of Texas at Austin, Austin, U.S.A., 1999).
[149] Shoemaker, DM; Huq, MF; Matzner, RA, Generic tracking of multiple apparent horizons with level flow, Phys. Rev. D, 62, 124005, (2000)
[150] Stoer, J., and Bulirsch, R., Introduction to Numerical Analysis, (Springer, Berlin, Germany; New York, U.S.A., 1980). · Zbl 0423.65002
[151] Sziláagyi, B., Pollney, D., Rezzolla, L., Thornburg, J., and Winicour, J., “An explicit harmonic code for black-hole evolution using excision”, (2007). URL (cited on 09 April 2007): http://arXiv.org/abs/gr-qc/0612150. · Zbl 1117.83081
[152] Teukolsky, SA, On the Stability of the Iterated Crank-Nicholson Method in Numerical Relativity, Phys. Rev. D, 61, 087501, (2000)
[153] Thornburg, J., Finding apparent horizons in numerical relativity, Phys. Rev. D, 54, 4899-4918, (1996)
[154] Thornburg, J., A 3+1 Computational Scheme for Dynamic Spherically Symmetric Black Hole Spacetimes — I: Initial Data, Phys. Rev. D, 59, 104007, (1999)
[155] Thornburg, J., “A 3+1 Computational Scheme for Dynamic Spherically Symmetric Black Hole Spacetimes — II: Time Evolution”, (1999). URL (cited on 09 January 2006): http://arXiv.org/abs/gr-qc/9906022.
[156] Thornburg, J., A fast apparent horizon finder for three-dimensional Cartesian grids in numerical relativity, Class. Quantum Grav., 21, 743-766, (2004) · Zbl 1045.83006
[157] Tod, KP, Looking for marginally trapped surfaces, Class. Quantum Grav., 8, l115-l118, (1991) · Zbl 0724.53039
[158] Trottenberg, U., Oosterlee, C.W., and Schüller, A., Multigrid, (Academic Press, San Diego, U.S.A., 2001). · Zbl 0976.65106
[159] Čadež, A., Apparent Horizons in the Two-Black-Hole Problem, Ann. Phys. (N.Y.), 83, 449-457, (1974)
[160] Wald, R.M., General Relativity, (University of Chicago Press, Chicago, U.S.A., 1984). · Zbl 0549.53001
[161] Wald, RM; Iyer, V., Trapped surfaces in the Schwarzschild geometry and cosmic censorship, Phys. Rev. D, 44, r3719-r3722, (1991)
[162] Walker, P., Horizons, Hyperbolic Systems, and Inner Boundary Conditions in Numerical Relativity, Ph.D. Thesis, (University of Illinois at Urbana-Champaign, Urbana, U.S.A., 1998).
[163] York, JW; Smarr, LL (ed.), Kinematics and Dynamics of General Relativity, Proceedings of the Battelle Seattle Workshop, July 24-August 4, 1978, Cambridge, U.K.; New York, U.S.A.
[164] York, JW; Evans, CR (ed.); Finn, LS (ed.); Hobill, DW (ed.), Initial Data for Collisions of Black Holes and Other Gravitational Miscellany, Proceedings of the International Workshop on Numerical Relativity, University of Illinois at Urbana-Champaign, U.S.A., May 9-13, 1988, Cambridge, U.K.; New York, U.S.A.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.