×

\(C^2\) Hermite interpolation by Pythagorean hodograph space curves. (English) Zbl 1122.65016

The problem of \(C^2\) Hermite interpolation by Pythagorean hodograph (PH) space curves is solved. Namely, for any set of \(C^2\) space boundary data a four-dimensional family of PH interpolants of degree 9 is constructed. The particular solution that fulfils a kind of geometrically invariant parameterization is isolated from the family which is shown to preserve planarity, has the best possible approximation order 6 and has symmetry property regarding the data order reverse. Some applications are quoted.

MSC:

65D17 Computer-aided design (modeling of curves and surfaces)
53A04 Curves in Euclidean and related spaces
65D05 Numerical interpolation
Full Text: DOI

References:

[1] Min-Ho Ahn, Gwang-Il Kim, and Chung-Nim Lee, Geometry of root-related parameters of PH curves, Appl. Math. Lett. 16 (2003), no. 1, 49 – 57. · Zbl 1021.65004 · doi:10.1016/S0893-9659(02)00143-X
[2] Hyeong In Choi, Doo Seok Lee, and Hwan Pyo Moon, Clifford algebra, spin representation, and rational parameterization of curves and surfaces, Adv. Comput. Math. 17 (2002), no. 1-2, 5 – 48. Advances in geometrical algorithms and representations. · Zbl 0998.65024 · doi:10.1023/A:1015294029079
[3] Hyeong In Choi and Chang Yong Han, Euler-Rodrigues frames on spatial Pythagorean-hodograph curves, Comput. Aided Geom. Design 19 (2002), no. 8, 603 – 620. · Zbl 1043.53005 · doi:10.1016/S0167-8396(02)00165-6
[4] Roland Dietz, Josef Hoschek, and Bert Jüttler, An algebraic approach to curves and surfaces on the sphere and on other quadrics, Comput. Aided Geom. Design 10 (1993), no. 3-4, 211 – 229. Free-form curves and free-form surfaces (Oberwolfach, 1992). · Zbl 0781.65009 · doi:10.1016/0167-8396(93)90037-4
[5] Rida T. Farouki, The conformal map \?\to \?² of the hodograph plane, Comput. Aided Geom. Design 11 (1994), no. 4, 363 – 390. · Zbl 0806.65005 · doi:10.1016/0167-8396(94)90204-6
[6] Rida T. Farouki and Takis Sakkalis, Pythagorean-hodograph space curves, Adv. Comput. Math. 2 (1994), no. 1, 41 – 66. · Zbl 0829.65011 · doi:10.1007/BF02519035
[7] R. T. Farouki and C. A. Neff, Hermite interpolation by Pythagorean hodograph quintics, Math. Comp. 64 (1995), no. 212, 1589 – 1609. · Zbl 0847.68125
[8] R. T. Farouki, J. Manjunathaiah and S. Jee (1998), Design of rational cam profiles with Pythagorean-hodograph curves. Mech. Mach. Theory 33, 669-682. · Zbl 1049.70536
[9] R. T. Farouki, K. Saitou, and Y.-F. Tsai, Least-squares tool path approximation with Pythagorean-hodograph curves for high-speed CNC machining, The mathematics of surfaces, VIII (Birmingham, 1998) Info. Geom., Winchester, 1998, pp. 245 – 264. · Zbl 0959.65027
[10] Rida T. Farouki, Mohammad al-Kandari, and Takis Sakkalis, Hermite interpolation by rotation-invariant spatial Pythagorean-hodograph curves, Adv. Comput. Math. 17 (2002), no. 4, 369 – 383. · Zbl 1001.41003 · doi:10.1023/A:1016280811626
[11] Rida T. Farouki, Mohammad al-Kandari, and Takis Sakkalis, Structural invariance of spatial Pythagorean hodographs, Comput. Aided Geom. Design 19 (2002), no. 6, 395 – 407. · Zbl 1001.41003 · doi:10.1016/S0167-8396(02)00123-1
[12] Rida T. Farouki, Pythagorean-hodograph curves, Handbook of computer aided geometric design, North-Holland, Amsterdam, 2002, pp. 405 – 427. · Zbl 1055.68124 · doi:10.1016/B978-044451104-1/50018-6
[13] Rida T. Farouki, Carla Manni, and Alessandra Sestini, Spatial \?² PH quintic splines, Curve and surface design (Saint-Malo, 2002) Mod. Methods Math., Nashboro Press, Brentwood, TN, 2003, pp. 147 – 156. · Zbl 1044.65010
[14] Rida T. Farouki and Chang Yong Han, Rational approximation schemes for rotation-minimizing frames on Pythagorean-hodograph curves, Comput. Aided Geom. Design 20 (2003), no. 7, 435 – 454. · Zbl 1069.65551 · doi:10.1016/S0167-8396(03)00095-5
[15] Rida T. Farouki, Chang Yong Han, Carla Manni, and Alessandra Sestini, Characterization and construction of helical polynomial space curves, J. Comput. Appl. Math. 162 (2004), no. 2, 365 – 392. · Zbl 1059.65016 · doi:10.1016/j.cam.2003.08.030
[16] Josef Hoschek and Dieter Lasser, Fundamentals of computer aided geometric design, A K Peters, Ltd., Wellesley, MA, 1993. Translated from the 1992 German edition by Larry L. Schumaker. · Zbl 0788.68002
[17] B. Jüttler and C. Mäurer (1999), Cubic Pythagorean Hodograph Spline Curves and Applications to Sweep Surface Modeling, Comp. Aided Design 31, 73-83. · Zbl 1054.68748
[18] B. Jüttler, Hermite interpolation by Pythagorean hodograph curves of degree seven, Math. Comp. 70 (2001), no. 235, 1089 – 1111. · Zbl 0963.68210
[19] Jack B. Kuipers, Quaternions and rotation sequences, Princeton University Press, Princeton, NJ, 1999. A primer with applications to orbits, aerospace, and virtual reality. · Zbl 1053.70001
[20] Hwan Pyo Moon, Rida T. Farouki, and Hyeong In Choi, Construction and shape analysis of PH quintic Hermite interpolants, Comput. Aided Geom. Design 18 (2001), no. 2, 93 – 115. · Zbl 0971.68186 · doi:10.1016/S0167-8396(01)00016-4
[21] Z. Šír (2003), Hermite interpolation by space PH curves. Proceedings of the 23rd Conference on Geometry and Computer Graphics, University Plzen, 193-198.
[22] Z. Šír and B. Jüttler (2005), Constructing acceleration continuous tool paths using pythagorean hodograph curves. Mech. Mach. Theory. 40(11), 1258-1272. · Zbl 1138.70303
[23] Z. Šír and B. Jüttler (2005), Spatial Pythagorean Hodograph Quintics and the Approximation of Pipe Surfaces, in R. Martin, H. Bez and M. Sabin, editors, The Mathematics of Surfaces XI, Springer, 364-380. · Zbl 1141.65336
[24] D. S. Meek and D. J. Walton, Geometric Hermite interpolation with Tschirnhausen cubics, J. Comput. Appl. Math. 81 (1997), no. 2, 299 – 309. · Zbl 0880.65003 · doi:10.1016/S0377-0427(97)00066-6
[25] D. J. Walton and D. S. Meek, A generalisation of the Pythagorean hodograph quintic spiral, J. Comput. Appl. Math. 172 (2004), no. 2, 271 – 287. · Zbl 1070.65012 · doi:10.1016/j.cam.2004.02.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.