Szilágyi, Ibolya; Jüttler, Bert; Schicho, Josef Local parametrization of cubic surfaces. (English) Zbl 1123.14033 J. Symb. Comput. 41, No. 1, 30-48 (2006). Summary: Algebraic surfaces - which are frequently used in geometric modelling - are represented either in implicit or parametric form. Several techniques for parametrizing a rational algebraic surface as a whole exist. However, in many applications, it suffices to parametrize a small portion of the surface. This motivates the analysis of local parametrizations, i.e., parametrizations of a small neighborhood of a given point \(P\) of the surface \(S\). In this paper we introduce several techniques for generating such parametrizations for nonsingular cubic surfaces. For this class of surfaces, it is shown that the local parametrization problem can be solved for all points, and any such surface can be covered completely. Cited in 2 Documents MSC: 14Q10 Computational aspects of algebraic surfaces 65D17 Computer-aided design (modeling of curves and surfaces) Keywords:parametrization; cubics; algorithm; surfaces × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Abhyankar, S. S.; Bajaj, C. L., Automatic parameterization of rational curves and surfaces. III. Algebraic plane curves, Comput. Aided Geom. Design, 5, 4, 309-321 (1988) · Zbl 0655.65019 [2] Abhyanker, S. S.; Bajaj, C., Automatic parametrization of rational curves and surfaces. II. Cubics and cubicoids, Comput. Aided Des., 19, 9, 499-502 (1987) · Zbl 0655.65018 [3] Bajaj, C. L.; Holt, R. J.; Netravali, A. R., Rational parametrization of non-singular real cubic surfaces, ACM Trans. Graph., 17, 1-31 (1998) [4] Berry, T. G.; Patterson, R. R., Implicitization and parametrization of nonsingular cubic surfaces, Comput. Aided Geom. Design, 18, 8, 723-738 (2001) · Zbl 0983.68221 [5] Bruce, J. W.; Wall, C. T.C., On the classification of cubic surfaces, J. London Math. Soc. (2), 19, 2, 245-256 (1979) · Zbl 0393.14007 [6] Buchberger, B., Applications of Gröbner bases in nonlinear computational geometry, (Trends in Computer Algebra (1988), Springer: Springer Berlin), 52-80 · Zbl 0653.13012 [7] Busé, L., Residual resultant over the projective plane and the implicitization problem, (Proc. ISSAC (2001), ACM: ACM New York), 48-55 · Zbl 1356.14057 [8] Cipolla, R.; Giblin, P., Visual Motion of Curves and Surfaces (2000), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1007.68001 [9] Corless, R. M.; Giesbrecht, M. W.; Kotsireas, I. S.; Watt, S. M., Numerical implicitization of parametric hypersurfaces with linear algebra, (AISC 2000. AISC 2000, LNCS (2001), Springer: Springer Berlin), 174-183 · Zbl 1042.65020 [10] Coste, M.; Roy, M.-F., Thom’s lemma, the coding of real algebraic numbers and the computation of the topology of semi-algebraic sets, J. Symbolic Comput., 5, 1-2, 121-129 (1988) · Zbl 0689.14006 [11] Dokken, T., Approximate implicitization, (Mathematical Methods for Curves and Surfaces (2001), Vanderbilt Univ. Press: Vanderbilt Univ. Press Nashville, TN), 81-102 · Zbl 0989.65019 [12] Dokken, T. et al., 2001. Intersection algorithms for geometry-based it applications using approximate algebraic methods. (GAIA II), EU project no. IST-2001-35512; Dokken, T. et al., 2001. Intersection algorithms for geometry-based it applications using approximate algebraic methods. (GAIA II), EU project no. IST-2001-35512 [13] Gonzalez-Vega, L.; Necula, I., Efficient topology determination of implicitly defined algebraic plane curves, Comput. Aided Geom. Design, 19, 9, 719-743 (2002) · Zbl 1043.68105 [14] Henderson, A., The Twenty-seven Lines upon the Cubic Surface (1960), Hafner: Hafner New York · JFM 42.0661.01 [15] Hoschek, J.; Lasser, D., Fundamentals of Computer Aided Geometric Design (1993), AK Peters: AK Peters Wellesley, MA · Zbl 0788.68002 [16] Kendig, K., Elementary Algebraic Geometry (1977), Springer: Springer New York · Zbl 0364.14001 [17] Manin, Y. I., Cubic Forms (1986), North-Holland: North-Holland Amsterdam · Zbl 0582.14010 [18] Pérez-Díaz, S.; Sendra, J.; Sendra, J. R., Parametrization of approximate algebraic curves by lines, Theoret. Comput. Sci., 315, 2-3, 627-650 (2004) · Zbl 1085.68187 [19] Pérez-Díaz, S.; Sendra, J.; Sendra, J. R., Parametrization of approximate algebraic surfaces by lines, Comput. Aided Geom. Design, 22, 2, 147-181 (2005) · Zbl 1087.65013 [20] Schicho, J., Rational parameterization of real algebraic surfaces, (Proc. ISSAC (1998), ACM: ACM New York), 302-308 · Zbl 0939.14034 [21] Schicho, J., Rational parametrization of surfaces, J. Symbolic Comput., 26, 1, 1-29 (1998) · Zbl 0924.14027 [22] Schirra, S., Robustness and precision issues in geometric computation, (Handbook of Computational Geometry (2000), North-Holland: North-Holland Amsterdam), 597-632 · Zbl 0947.68153 [23] Sederberg, T. W., Degenerate parametric curves, Comput. Aided Geom. Design, 1, 4, 301-307 (1984) · Zbl 0576.65136 [24] Sederberg, T. W., Improperly parameterized rational curves, Comput. Aided Geom. Design, 3, 1, 67-75 (1986) · Zbl 0594.65006 [25] Sederberg, T. W., Techniques for cubic algebraic surfaces. II, IEEE Comput. Graph. Appl., 10, 5, 12-21 (1990) [26] Sederberg, T. W.; Snively, J. P., Parametrization of cubic algebraic surfaces, (The Mathematics of Surfaces, II (1987), Oxford Univ. Press), 299-319 · Zbl 0676.14001 [27] Segre, B., The Non-singular Cubic Surfaces (1942), Oxford University Press · JFM 68.0358.01 [28] Sendra, J. R.; Winkler, F., Tracing index of rational curve parametrizations, Comput. Aided Geom. Design, 18, 8, 771-795 (2001) · Zbl 0983.68224 [29] Szilágyi, I., 2005. Symbolic-numeric techniques for cubic surfaces. Ph.D. Thesis (submitted); Szilágyi, I., 2005. Symbolic-numeric techniques for cubic surfaces. Ph.D. Thesis (submitted) [30] Zheng, J.; Sederberg, T. W.; Chionh, E.-W.; Cox, D. A., Implicitizing rational surfaces with base points using the method of moving surfaces, (Topics in Algebraic Geometry and Geometric Modeling (2003), AMS: AMS Providence, RI), 151-168 · Zbl 1058.14074 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.