×

zbMATH — the first resource for mathematics

The weak boundary effect in a field as a source approaches the boundary. (Russian, English) Zbl 1130.74023
J. Math. Sci., New York 132, No. 1, 48-55 (2006); translation from Zap. Nauchn. Semin. POMI 308, 89-100, 253 (2004).
Summary: The response of a weak interface inside an isotropic elastic medium to an approaching source is considered. It is shown that a strong shear wave arises in the wave field reflected at an angle greater than a critical one. Properties of this wave are studied, and theoretical seismograms describing the contribution of all reflected waves to the total field are presented.
MSC:
74J20 Wave scattering in solid mechanics
74J15 Surface waves in solid mechanics
74L05 Geophysical solid mechanics
86A15 Seismology (including tsunami modeling), earthquakes
Full Text: DOI EuDML
References:
[1] Y. J. Wang and S. I. Rokhlin, ”On transition between slip and rigid boundary conditions between two solids,” J. Acoust. Soc. Amer., S93, 186 (1989).
[2] S. I. Rokhlin and Y. J. Wang, ”Analysis of boundary conditions for elastic wave interaction with an interface between two solids,” J. Acoust. Soc. Amer., 89, 503–515 (1991). · doi:10.1121/1.400374
[3] P. V. Krauklis and L. A. Krauklis, ”Reflection and transmission of waves on a weak boundary, Vopr. Dinam. Teor. Rasprostr. Seism. Voln, 25, 76–85 (1986). · Zbl 0613.73021
[4] J. N. Albright, C. F. Pearson, and M. C. Fehler, ”Transmission of acoustic signals through hydraulic fractures,” in: SPWLA Twenty-first annual logging symposium (1980), pp. 1–18.
[5] P. V. Krauklis and L. A. Krauklis, ”One type of waves in media containing loosely bonded interfaces,” Zap. Nauchn. Semin. LOMI, 173, 113–122 (1988). · Zbl 0688.73011
[6] A. C. Johnston, ”Air blast recognition and location using regional seismographic network,” Bull. Seism. Soc. Amer., 77, 1446–1456 (1987).
[7] B. J. Mikhailenko and F. Hron, ”Discovery of a nongeometrical S arrival generated at the free interface,” in: Programme and Abstracts of the Seventeenth General Assembly of the European Seismological Commission (1986), p. 188.
[8] V. M. Babich and A. P. Kiselev, ”Nongeometric waves – are they any? An asymptotic description of some ”nongeometric” phenomena in seismic wave propagation,” Geophys. J. Int., 99, 415–420 (1980). · Zbl 0704.73023 · doi:10.1111/j.1365-246X.1989.tb01698.x
[9] P. F. Daley and F. Hron, ”Nongeometric arrivals due to highly concentrated sources adjacent to plane interfaces,” Bull. Seism. Soc. Amer., 73, 1655–1671 (1983).
[10] P. V. Krauklis and V. P. Krauklis, ”Nonray phenomenon in media with a source adjacent to the boundary,” Vopr. Dinam. Teor. Rasprostr. Seism. Voln, 26, 245–251 (1986).
[11] J. Y. Kim and J. Behrens, ”Experimental evidence of the S* wave,” Geophys. Prospecting, 34, 100–108 (1986). · doi:10.1111/j.1365-2478.1986.tb00455.x
[12] P. R. Gutowski, F. Hron, D. E. Wagner, and S. Treitel, ”S*,” Amoko Technical Report, F82-E-8, Tulsa Oklahoma (1982).
[13] L. M. Brekhovskikh, Waves in Layered Media [in Russian], Moscow (1957). · Zbl 0558.73018
[14] C. Salvado and J. B. Minster, ”Slipping interfaces: a possible source of S radiation from explosive sources, Bull. Seism. Soc. Amer., 659–670 (1980).
[15] L. Alleotti, Miranda, et al., ”Seisbit-latest applications of seismic while drilling technology,” in: EAGE 57th Conference and Technical Exhibition, Glasgow (1995).
[16] J. W. III Rector and B. A. Hartage, ”Radiation pattern and seismic waves generated by a working roller-cone drill bit,” Geophysics, 57, 1319–1333 (1992). · doi:10.1190/1.1443199
[17] J. W. III Rector and B. P. Marion, ”The use of drill-bit energy as a downhole seismic source,” Geophysics, 56, 628–634 (1991). · doi:10.1190/1.1443079
[18] L. A. Molotkov, ”On sources of the type of a center of compression in isotropic and transversally-isotropic media, Vopr. Dinam. Teor. Rasprostr. Seism. Voln, 25, 76–85 (1986).
[19] G. I. Petrashen, L. A. Molotkov, and P. V. Krauklis, Waves in Layered Homogeneous Isotropic Elastic Media [in Russian], Moscow (1985).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.