Šír, Zbyněk; Gravesen, Jens; Jüttler, Bert Curves and surfaces represented by polynomial support functions. (English) Zbl 1134.68062 Theor. Comput. Sci. 392, No. 1-3, 141-157 (2008). Summary: This paper studies shapes (curves and surfaces) which can be described by (piecewise) polynomial support functions. The class of these shapes is closed under convolutions, offsetting, rotations and translations. We give a geometric discussion of these shapes and present methods for the approximation of general curves and surfaces by them. Based on the rich theory of spherical spline functions, this leads to computational techniques for rational curves and surfaces with rational offsets, which can deal with shapes without inflections/parabolic points. Cited in 16 Documents MSC: 68U07 Computer science aspects of computer-aided design 41A15 Spline approximation 65D07 Numerical computation using splines Keywords:polynomial support function; approximation by spherical splines; offset surfaces; convolutions × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Alfeld, P.; Neamtu, M.; Schumaker, L. L., Fitting scattered data on sphere-like surfaces using spherical splines, J. Comput. Appl. Math., 73, 5-43 (1996) · Zbl 0863.65002 [2] Almegaard, H.; Bagger, A.; Gravesen, J.; Jüttler, B.; Šír, Z., Surfaces with piecewise linear support functions over spherical triangulation, (Martin, R.; Sabin, M.; Winkler, J., The Mathematics of Surfaces XII. The Mathematics of Surfaces XII, LNCS, vol. 4647 (2007), Springer), 42-63 · Zbl 1163.68344 [3] Bonnesen, T.; Fenchel, W., Theory of Convex Bodies (1987), BCS Associates: BCS Associates Moscow, Idaho · Zbl 0628.52001 [4] Elber, G.; Cohen, E., Error bound variable distance offset operator for free form curves and surfaces, Int. J. Comput. Geom. Appl., 1, 67-78 (1991) · Zbl 0722.68099 [5] Elber, G.; Lee, I.-W.; Kim, M.-S., Comparing offset curve approximation methods, IEEE Comput. Graph. Appl., 17.3, 62-71 (1997) [6] Farouki, R., Pythagorean-hodograph curves, (Farin, G.; Hoschek, J.; Kim, M.-S., Handbook of Computer Aided Geometric Design (2002), North Holland), 405-427 [7] Gluck, H., Geometric characterization of differentiable manifolds in Euclidean space II, Michigan Math. J., 15, 33-50 (1968) · Zbl 0159.54004 [8] Görtler, H., Erzeugung stützbarer Bereiche I; II, Deutsche Math., 2, 454-466 (1937), 3 (1938) 189-200 · JFM 63.0670.01 [9] Gravesen, J.; Henriksen, C., The geometry of the scroll compressor, SIAM Rev., 43, 113-126 (2001) · Zbl 0985.53002 [10] Gravesen, J., The intrinsic equation of planar curves and \(G^2\) Hermite interpolation, (Lucian, M.; Neamtu, M., Geometric Modelling and Computing: Seattle 2003 (2004), Nashboro Press: Nashboro Press Brentwood), 295-310 · Zbl 1060.65537 [11] Groemer, H., Geometric Applications of Fourier Series and Spherical Harmonics (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0877.52002 [12] Gruber, P. M.; Wills, J. M., Handbook of Convex Geometry (1993), North-Holland: North-Holland Amsterdam · Zbl 0777.52001 [13] Jüttler, B.; Sampoli, M. L., Hermite interpolation by piecewise polynomial surfaces with rational offsets, Comput. Aided Geom. Design, 17, 361-385 (2000) · Zbl 0938.68123 [14] Maekawa, T., An overview of offset curves and surfaces, Comput. Aided Des., 31, 165-173 (1999) · Zbl 1053.68747 [15] Peternell, M.; Pottmann, H., A Laguerre geometric approach to rational offsets, Comput. Aided Geom. Design, 15, 223-249 (1998) · Zbl 0903.68190 [16] Pottmann, H., Rational curves and surfaces with rational offsets, Comput. Aided Geom. Design, 12, 175-192 (1995) · Zbl 0872.65011 [17] M. Sabin, A class of surfaces closed under five important geometric operations, Technical report no. VTO/MS/207, British aircraft corporation, 1974. Available at: http://www.damtp.cam.ac.uk/user/na/people/Malcolm/vtoms/vtos.html; M. Sabin, A class of surfaces closed under five important geometric operations, Technical report no. VTO/MS/207, British aircraft corporation, 1974. Available at: http://www.damtp.cam.ac.uk/user/na/people/Malcolm/vtoms/vtos.html [18] Sampoli, M. L.; Peternell, M.; Jüttler, B., Rational surfaces with linear normals and their convolutions with rational surfaces, Comput. Aided Geom. Design, 23, 179-192 (2006) · Zbl 1095.53006 [19] R. Schickentanz, Interpolation und Approximation durch B-Spline-Flächen mit rationalen Offsets, Ph.D. Thesis, Technische Universität Darmstadt, 1999; R. Schickentanz, Interpolation und Approximation durch B-Spline-Flächen mit rationalen Offsets, Ph.D. Thesis, Technische Universität Darmstadt, 1999 · Zbl 0931.65010 [20] Šír, Z.; Gravesen, J.; und Jüttler, B., Computing convolutions and Minkowski sums via support functions, (Chenin, P.; Lyche, T.; Schumaker, L. L., Curve and Surface Design: Avignon 2006 (2007), Nashboro Press), 244-253 · Zbl 1130.65024 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.