Soulé, Christophe A bound for the torsion in the \(K\)-theory of algebraic integers. (English) Zbl 1142.11375 Doc. Math. Extra Vol., Kazuya Kato’s Fiftieth Birthday, 761-788 (2003). Summary: Let \(m\) be an integer bigger than one, \(A\) a ring of algebraic integers, \(F\) its fraction field, and \(K_m (A)\) the \(m\)-th Quillen \(K\)-group of \(A\). We give a (huge) explicit bound for the order of the torsion subgroup of \(K_m (A)\) (up to small primes), in terms of \(m\), the degree of \(F\) over \(\mathbb Q\), and its absolute discriminant. Cited in 1 Document MSC: 11R70 \(K\)-theory of global fields 19D99 Higher algebraic \(K\)-theory 19F27 Étale cohomology, higher regulators, zeta and \(L\)-functions (\(K\)-theoretic aspects) PDF BibTeX XML Cite \textit{C. Soulé}, Doc. Math. Extra Vol., 761--788 (2003; Zbl 1142.11375) Full Text: EuDML EMIS OpenURL