×

zbMATH — the first resource for mathematics

Application of He’s variational iteration method to solve semidifferential equations of \(n\)th order. (English) Zbl 1155.65380
Summary: He’s variational iteration method is applied to solve \(n\)th order semidifferential equations. Comparison is made between collocation spline method based on Lagrange interpolation and the present method. In this method, the solution is calculated in the form of a convergent series with easily computable components. This approach does not need linearization, weak nonlinearity assumptions, or perturbation theory. Some examples are given to illustrate the effectiveness of the method; the results show that He’s method provides a straightforward and powerful mathematical tool for solving various semidifferential equations of the \(n\)th order.

MSC:
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35R10 Functional partial differential equations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] J.-H. He, “Variational iteration method-a kind of non-linear analytical technique: some examples,” International Journal of Non-Linear Mechanics, vol. 34, no. 4, pp. 699-708, 1999. · Zbl 1342.34005 · doi:10.1016/S0020-7462(98)00048-1
[2] J.-H. He, “A new approach to nonlinear partial differential equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 2, no. 4, pp. 230-235, 1997. · Zbl 0923.35046 · doi:10.1016/S1007-5704(97)90029-0
[3] J.-H. He, “Approximate analytical solution for seepage flow with fractional derivatives in porous media,” Computer Methods in Applied Mechanics and Engineering, vol. 167, no. 1-2, pp. 57-68, 1998. · Zbl 0942.76077 · doi:10.1016/S0045-7825(98)00108-X
[4] J.-H. He, “Approximate solution of nonlinear differential equations with convolution product nonlinearities,” Computer Methods in Applied Mechanics and Engineering, vol. 167, no. 1-2, pp. 69-73, 1998. · Zbl 0932.65143 · doi:10.1016/S0045-7825(98)00109-1
[5] J.-H. He, “Variational iteration method for delay differential equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 2, no. 4, pp. 235-236, 1997. · Zbl 0924.34063 · doi:10.1016/S1007-5704(97)90008-3
[6] J.-H. He, “Variational iteration method for autonomous ordinary differential systems,” Applied Mathematics and Computation, vol. 114, no. 2-3, pp. 115-123, 2000. · Zbl 1027.34009 · doi:10.1016/S0096-3003(99)00104-6
[7] J.-H. He, “Variational principles for some nonlinear partial differential equations with variable coefficients,” Chaos, Solitons & Fractals, vol. 19, no. 4, pp. 847-851, 2004. · Zbl 1135.35303 · doi:10.1016/S0960-0779(03)00265-0
[8] S.-Q. Wang and J.-H. He, “Variational iteration method for solving integro-differential equations,” Physics Letters A, vol. 367, no. 3, pp. 188-191, 2007. · Zbl 1209.65152 · doi:10.1016/j.physleta.2007.02.049
[9] J.-H. He and X.-H. Wu, “Construction of solitary solution and compacton-like solution by variational iteration method,” Chaos, Solitons & Fractals, vol. 29, no. 1, pp. 108-113, 2006. · Zbl 1147.35338 · doi:10.1016/j.chaos.2005.10.100
[10] J.-H. He, “Variational approach to the Thomas-Fermi equation,” Applied Mathematics and Computation, vol. 143, no. 2-3, pp. 533-535, 2003. · Zbl 1022.65083 · doi:10.1016/S0096-3003(02)00380-6
[11] J.-H. He, “Variational approach to the sixth-order boundary value problems,” Applied Mathematics and Computation, vol. 143, no. 2-3, pp. 537-538, 2003. · Zbl 1025.65043 · doi:10.1016/S0096-3003(02)00381-8
[12] J.-H. He, “Variational principles for some nonlinear partial differential equations with variable coefficients,” Chaos, Solitons & Fractals, vol. 19, no. 4, pp. 847-851, 2004. · Zbl 1135.35303 · doi:10.1016/S0960-0779(03)00265-0
[13] J.-H. He, “Variational approach to (2+1)-dimensional dispersive long water equations,” Physics Letters A, vol. 335, no. 2-3, pp. 182-184, 2005. · Zbl 1123.37319 · doi:10.1016/j.physleta.2004.12.019
[14] J.-H. He, “Variational iteration method-some recent results and new interpretations,” Journal of Computational and Applied Mathematics, vol. 207, no. 1, pp. 3-17, 2007. · Zbl 1119.65049 · doi:10.1016/j.cam.2006.07.009
[15] M. Inc, “Exact special solutions to the nonlinear dispersive K(2,2,1) and K(3,3,1) equations by He/s variational iteration method,” Nonlinear Analysis: Theory, Methods & Applications. In press. · Zbl 1159.35413 · doi:10.1016/j.na.2007.05.046
[16] M. A. Abdou and A. A. Soliman, “Variational iteration method for solving Burger/s and coupled Burger/s equations,” Journal of Computational and Applied Mathematics, vol. 181, no. 2, pp. 245-251, 2005. · Zbl 1072.65127 · doi:10.1016/j.cam.2004.11.032
[17] S. Abbasbandy, “An approximation solution of a nonlinear equation with Riemann-Liouville/s fractional derivatives by He/s variational iteration method,” Journal of Computational and Applied Mathematics, vol. 207, no. 1, pp. 53-58, 2007. · Zbl 1120.65133 · doi:10.1016/j.cam.2006.07.011
[18] A.-M. Wazwaz, “The variational iteration method for exact solutions of Laplace equation,” Physics Letters A, vol. 363, no. 4, pp. 260-262, 2007. · Zbl 1197.65204 · doi:10.1016/j.physleta.2006.11.014
[19] S. Momani and S. Abuasad, “Application of He/s variational iteration method to Helmholtz equation,” Chaos, Solitons & Fractals, vol. 27, no. 5, pp. 1119-1123, 2006. · Zbl 1086.65113 · doi:10.1016/j.chaos.2005.04.113
[20] Z. M. Odibat and S. Momani, “Application of variational iteration method to nonlinear differential equations of fractional order,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 7, no. 1, pp. 27-34, 2006. · Zbl 0893.65051
[21] A.-M. Wazwaz, “The variational iteration method for rational solutions for KdV, K(2,2), Burgers, and cubic Boussinesq equations,” Journal of Computational and Applied Mathematics, vol. 207, no. 1, pp. 18-23, 2007. · Zbl 1119.65102 · doi:10.1016/j.cam.2006.07.010
[22] M. Tatari and M. Dehghan, “He/s variational iteration method for computing a control parameter in a semi-linear inverse parabolic equation,” Chaos, Solitons & Fractals, vol. 33, no. 2, pp. 671-677, 2007. · Zbl 1131.65084 · doi:10.1016/j.chaos.2006.01.059
[23] S. Abbasbandy, “A new application of He/s variational iteration method for quadratic Riccati differential equation by using Adomian/s polynomials,” Journal of Computational and Applied Mathematics, vol. 207, no. 1, pp. 59-63, 2007. · Zbl 1120.65083 · doi:10.1016/j.cam.2006.07.012
[24] E. Yusufoglu and A. Bekir, “Numerical simulation of equal-width wave equation,” Computers and Mathematics with Applications, vol. 54, no. 7-8, pp. 1147-1153, 2007. · Zbl 1141.65389 · doi:10.1016/j.camwa.2006.12.080
[25] N. H. Sweilam, “Fourth order integro-differential equations using variational iteration method,” Computers and Mathematics with Applications, vol. 54, no. 7-8, pp. 1086-1091, 2007. · Zbl 1141.65399 · doi:10.1016/j.camwa.2006.12.055
[26] J.-H. He and X.-H. Wu, “Variational iteration method: new development and applications,” Computers and Mathematics with Applications, vol. 54, no. 7-8, pp. 881-894, 2007. · Zbl 1141.65372 · doi:10.1016/j.camwa.2006.12.083
[27] E. A. Rawashdeh, “Numerical solution of semidifferential equations by collocation method,” Applied Mathematics and Computation, vol. 174, no. 2, pp. 869-876, 2006. · Zbl 1090.65097 · doi:10.1016/j.amc.2005.05.029
[28] K. Diethelm and N. J. Ford, “Analysis of fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 265, no. 2, pp. 229-248, 2002. · Zbl 1014.34003 · doi:10.1006/jmaa.2001.7194
[29] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0893.65051
[30] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach, New York, NY, USA, 1993. · Zbl 0893.65051
[31] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, New York, NY, USA, 1993. · Zbl 0893.65051
[32] K. Diethelm and N. J. Ford, “Numerical solution of the Bagley-Torvik equation,” BIT, vol. 42, no. 3, pp. 490-507, 2002. · Zbl 0893.65051
[33] K. Diethelm and A. D. Freed, “On the solution of nonlinear fractional-order differential equation used in the modeling of viscoplasticity,” in Scientific Computing in Chemical Engineering II- Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, F. Keil, W. Mackens, H. Voß, and J. Werther, Eds., pp. 217-224, Springer, Heidelberg, Germany, 1999. · Zbl 0893.65051
[34] L. Gaul, P. Klein, and S. Kemple, “Damping and description involving fractional operators,” Mechanical Systems and Signal Processing, vol. 5, no. 2, pp. 81-88, 1991. · doi:10.1016/0888-3270(91)90016-X
[35] W. G. Glockle and T. F. Nonnenmacher, “A fractional calculus approach to self-similar protein dynamics,” Biophysical Journal, vol. 68, no. 1, pp. 46-53, 1995. · Zbl 0893.65051
[36] F. Mainardi, “Fractional calculus: some basic problems in continuum and statistical mechanics,” in Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996), vol. 378 of CISM Courses and Lectures, pp. 291-348, Springer, Vienna, Austria, 1997. · Zbl 0893.65051
[37] I. Podlubny, “Numerical solution of ordinary fractional differential equations by the fractional difference method,” in Proceedings of the 2nd International Conference on Difference Equations, S. Elaydi, I. Györi, and G. Ladas, Eds., pp. 507-515, Gordon and Breach, Veszprém, Hungary, August 1997. · Zbl 0893.65051
[38] L. Blank, “Numerical treatment of differential equations of fractional order,” The University of Manchester, Manchester, UK, 1996. · Zbl 0893.65051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.