×

zbMATH — the first resource for mathematics

Elliptic equations in weighted Sobolev spaces on unbounded domains. (English) Zbl 1158.35345
Summary: We study in this paper a class of second-order linear elliptic equations in weighted Sobolev spaces on unbounded domains of \(\mathbb R^{n}\), \(n\geq 3\). We obtain an a priori bound, and a regularity result from which we deduce a uniqueness theorem.

MSC:
35J15 Second-order elliptic equations
35B45 A priori estimates in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] C. Miranda, “Sulle equazioni ellittiche del secondo ordine di tipo non variazionale, a coefficienti discontinui,” Annali di Matematica Pura ed Applicata, vol. 63, no. 1, pp. 353-386, 1963. · Zbl 0156.34001 · doi:10.1007/BF02412185
[2] A. Alvino and G. Trombetti, “Second order elliptic equations whose coefficients have their first derivatives weakly-Ln,” Annali di Matematica Pura ed Applicata, vol. 138, no. 1, pp. 331-340, 1984. · Zbl 0579.35019 · doi:10.1007/BF01762551
[3] M. Chicco, “Dirichlet problem for a class of linear second order elliptic partial differential equations with discontinuous coefficients,” Annali di Matematica Pura ed Applicata, vol. 92, no. 1, pp. 13-22, 1972. · Zbl 0244.35038 · doi:10.1007/BF02417932
[4] M. Franciosi and N. Fusco, “W2,p regularity for the solutions of elliptic nondivergence form equations with rough coefficients,” Ricerche di Matematica, vol. 38, no. 1, pp. 93-106, 1989. · Zbl 0763.35028
[5] F. Chiarenza, M. Frasca, and P. Longo, “Interior W2,p estimates for nondivergence elliptic equations with discontinuous coefficients,” Ricerche di Matematica, vol. 40, no. 1, pp. 149-168, 1991. · Zbl 0763.35028
[6] F. Chiarenza, M. Frasca, and P. Longo, “W2,p-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients,” Transactions of the American Mathematical Society, vol. 336, no. 2, pp. 841-853, 1993. · Zbl 0818.35023 · doi:10.2307/2154379
[7] C. Vitanza, “W2,p-regularity for a class of elliptic second order equations with discontinuous coefficients,” Le Matematiche, vol. 47, no. 1, pp. 177-186, 1992. · Zbl 0763.35028
[8] C. Vitanza, “A new contribution to the W2,p regularity for a class of elliptic second order equations with discontinuous coefficients,” Le Matematiche, vol. 48, no. 2, pp. 287-296, 1993. · Zbl 0763.35028
[9] M. Transirico and M. Troisi, “Equazioni ellittiche del secondo ordine di tipo non variazionale in aperti non limitati,” Annali di Matematica Pura ed Applicata, vol. 152, pp. 209-226, 1988. · Zbl 0763.35028
[10] M. Transirico and M. Troisi, “Ulteriori contributi allo studio delle equazioni ellittiche del secondo ordine in aperti non limitati,” Bollettino della Unione Matematica Italiana. Serie VII. B, vol. 4, no. 3, pp. 679-691, 1990. · Zbl 0763.35028
[11] L. Caso, P. Cavaliere, and M. Transirico, “Existence results for elliptic equations,” Journal of Mathematical Analysis and Applications, vol. 274, no. 2, pp. 554-563, 2002. · Zbl 1055.35038 · doi:10.1016/S0022-247X(02)00287-1
[12] L. Caso, P. Cavaliere, and M. Transirico, “Solvability of the Dirichlet problem in W2,p for elliptic equations with discontinuous coefficients in unbounded domains,” Le Matematiche, vol. 57, no. 2, pp. 287-302, 2002. · Zbl 0763.35028
[13] L. Caso, P. Cavaliere, and M. Transirico, “Uniqueness results for elliptic equations VMO-coefficients,” International Journal of Pure and Applied Mathematics, vol. 13, no. 4, pp. 499-512, 2004. · Zbl 0763.35028
[14] L. Caso, P. Cavaliere, and M. Transirico, “An existence result for elliptic equations with VMO-coefficients,” Journal of Mathematical Analysis and Applications, vol. 325, no. 2, pp. 1095-1102, 2007. · Zbl 1152.35025 · doi:10.1016/j.jmaa.2006.02.048
[15] P. Di Gironimo and M. Transirico, “Second order elliptic equations in weighted Sobolev spaces on unbounded domains,” Rendiconti della Accademia Nazionale delle Scienze detta dei XL. Serie V. Memorie di Matematica, vol. 15, no. 1, pp. 163-176, 1991. · Zbl 0763.35028
[16] L. Caso and M. Transirico, “Some remarks on a class of weight functions,” Commentationes Mathematicae Universitatis Carolinae, vol. 37, no. 3, pp. 469-477, 1996. · Zbl 0763.35028
[17] M. Troisi, “Su una classe di funzioni peso,” Rendiconti della Accademia Nazionale delle Scienze detta dei XL. Serie V. Memorie di Matematica, vol. 10, no. 1, pp. 141-152, 1986. · Zbl 0763.35028
[18] M. Troisi, “Su una classe di spazi di Sobolev con peso,” Rendiconti della Accademia Nazionale delle Scienze detta dei XL. Serie V. Memorie di Matematica, vol. 10, no. 1, pp. 177-189, 1986. · Zbl 0763.35028
[19] M. Transirico, M. Troisi, and A. Vitolo, “Spaces of Morrey type and elliptic equations in divergence form on unbounded domains,” Bollettino della Unione Matematica Italiana. Serie VII. B, vol. 9, no. 1, pp. 153-174, 1995. · Zbl 0763.35028
[20] M. Transirico, M. Troisi, and A. Vitolo, “BMO spaces on domains of \Bbb Rn,” Ricerche di Matematica, vol. 45, no. 2, pp. 355-378, 1996. · Zbl 0763.35028
[21] A. V. Glushak, M. Transirico, and M. Troisi, “Teoremi di immersione ed equazioni ellittiche in aperti non limitati,” Rendiconti di Matematica e delle sue Applicazioni, vol. 9, no. 1, pp. 113-130, 1989. · Zbl 0763.35028
[22] S. Boccia and L. Caso, “Interpolation inequalities in weighted Sobolev spaces,” to appear in Journal of Mathematical Inequalities. · Zbl 0763.35028
[23] C. Miranda, “Teoremi di unicità in domini non limitati e teoremi di Liouville per le soluzioni dei problemi al contorno relativi alle equazioni ellittiche,” Annali di Matematica Pura ed Applicata, vol. 59, no. 1, pp. 189-212, 1962. · Zbl 0142.38002 · doi:10.1007/BF02411730
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.