zbMATH — the first resource for mathematics

Unconstrained finite element for geometrical nonlinear dynamics of shells. (English) Zbl 1179.74140
Summary: This paper presents a positional FEM formulation to deal with geometrical nonlinear dynamics of shells. The main objective is to develop a new FEM methodology based on the minimum potential energy theorem written regarding nodal positions and generalized unconstrained vectors not displacements and rotations. These characteristics are the novelty of the present work and avoid the use of large rotation approximations. A nondimensional auxiliary coordinate system is created, and the change of configuration function is written following two independent mappings from which the strain energy function is derived. This methodology is called positional and, as far as the authors’ knowledge goes, is a new procedure to approximated geometrical nonlinear structures. In this paper a proof for the linear and angular momentum conservation property of the Newmark \(\beta \) algorithm is provided for total Lagrangian description. The proposed shell element is locking free for elastic stress-strain relations due to the presence of linear strain variation along the shell thickness. The curved, high-order element together with an implicit procedure to solve nonlinear equations guarantees precision in calculations. The momentum conserving, the locking free behavior, and the frame invariance of the adopted mapping are numerically confirmed by examples.

74S05 Finite element methods applied to problems in solid mechanics
74K25 Shells
Full Text: DOI EuDML
[1] K. E. Bisshopp and D. C. Drucker, “Large deflection of cantilever beams,” Quarterly of Applied Mathematics, vol. 3, pp. 272-275, 1945. · Zbl 0063.00418
[2] K. Mattiasson, “Numerical results from large deflection beam and frame problems analysed by means of elliptic integrals,” International Journal for Numerical Methods in Engineering, vol. 17, no. 1, pp. 145-153, 1981. · Zbl 0453.73088 · doi:10.1002/nme.1620170113
[3] Y. Goto, S. Matsuura, A. Hasegawa, and F. Nishino, “A new formulation of finite displacement theory of curved and twisted rods,” Proceedings of Japan Society of Civil Engineers, Structural Engineering/Earthquake Engineering, vol. 2, no. 362, pp. 119-129, 1985.
[4] J. A. Jenkins, T. B. Seitz, and J. S. Przemieniecki, “Large deflections of diamond-shaped frames,” International Journal of Solids and Structures, vol. 2, no. 4, pp. 591-603, 1966. · doi:10.1016/0020-7683(66)90041-2
[5] C. N. Kerr, “Large deflections of a square frame,” The Quarterly Journal of Mechanics and Applied Mathematics, vol. 17, no. 1, pp. 23-38, 1964. · Zbl 0114.40601 · doi:10.1093/qjmam/17.1.23
[6] D. P. Mondkar and G. H. Powell, “Finite element analysis of non-linear static and dynamic response,” International Journal for Numerical Methods in Engineering, vol. 11, no. 3, pp. 499-520, 1977. · Zbl 0353.73065 · doi:10.1002/nme.1620110309
[7] T. Belytschko, L. Schwer, and M. J. Klein, “Large displacement, transient analysis of space frames,” International Journal for Numerical Methods in Engineering, vol. 11, no. 1, pp. 65-84, 1977. · Zbl 0347.73053 · doi:10.1002/nme.1620110108
[8] M. Stein and J. M. Hedgepath, “Analysis of partly wrinkled membranes,” NASA Technical Note, NASA, Washington, DC, USA, 1961.
[9] F. E. Baginski, K. A. Brakke, and W. W. Schur, “Cleft formation in pumpkin balloons,” Advances in Space Research, vol. 37, no. 11, pp. 2070-2081, 2006. · doi:10.1016/j.asr.2005.04.104
[10] A. C. Pipkin, “Relaxed energy densities for large deformations of membranes,” IMA Journal of Applied Mathematics, vol. 52, no. 3, pp. 297-308, 1994. · Zbl 0801.73040 · doi:10.1093/imamat/52.3.297
[11] J. Bonet, R. D. Wood, J. Mahaney, and P. Heywood, “Finite element analysis of air supported membrane structures,” Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 5-7, pp. 579-595, 2000. · Zbl 1007.74071 · doi:10.1016/S0045-7825(99)00428-4
[12] E. Oñate and F. Zárate, “Rotation-free triangular plate and shell elements,” International Journal for Numerical Methods in Engineering, vol. 47, no. 1-3, pp. 557-603, 2000. · Zbl 0968.74070 · doi:10.1002/(SICI)1097-0207(20000110/30)47:1/3<557::AID-NME784>3.0.CO;2-9
[13] F. G. Flores and E. Oñate, “A rotation-free shell triangle for the analysis of kinked and branching shells,” International Journal for Numerical Methods in Engineering, vol. 69, no. 7, pp. 1521-1551, 2007. · Zbl 1194.74394 · doi:10.1002/nme.1823
[14] J. Argyris, M. Papadrakakis, and Z. S. Mouroutis, “Nonlinear dynamic analysis of shells with the triangular element TRIC,” Computer Methods in Applied Mechanics and Engineering, vol. 192, no. 26-27, pp. 3005-3038, 2003. · Zbl 1054.74722 · doi:10.1016/S0045-7825(03)00315-3
[15] J. C. Simo, M. S. Rifai, and D. D. Fox, “On a stress resultant geometrically exact shell model. VI. Conserving algorithms for nonlinear dynamics,” International Journal for Numerical Methods in Engineering, vol. 34, no. 1, pp. 117-164, 1992. · Zbl 0760.73045 · doi:10.1002/nme.1620340108
[16] S. Lopez, “Improving stability by change of representation in time-stepping analysis of non-linear beams dynamics,” International Journal for Numerical Methods in Engineering, vol. 69, no. 4, pp. 822-836, 2007. · Zbl 1194.74437 · doi:10.1002/nme.1789
[17] R. W. Ogden, Non-Linear Elastic Deformations, Ellis Horwood, London, UK, 1984. · Zbl 0541.73044
[18] P. G. Ciarlet, Mathematical Elasticity, North-Holland, Amsterdam, The Netherlands, 1993.
[19] M. A. Crisfield and G. Jelenić, “Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation,” Proceedings of the Royal Society A, vol. 455, no. 1983, pp. 1125-1147, 1999. · Zbl 0926.74062 · doi:10.1098/rspa.1999.0352
[20] C. Lánczos, The Variational Principles of Mechanics, Dover, New York, NY, USA, 4th edition, 1970.
[21] C. Kane, J. E. Marsden, M. Ortiz, and M. West, “Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems,” International Journal for Numerical Methods in Engineering, vol. 49, no. 10, pp. 1295-1325, 2000. · Zbl 0969.70004 · doi:10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.0.CO;2-W
[22] J. Argyris and H.-P. Mlejnek, Dynamics of Structures, vol. 5 of Texts on Computational Mechanics, North-Holland, Amsterdam, The Netherlands, 1991. · Zbl 0792.73001
[23] H. B. Coda and R. R. Paccola, “An alternative positional FEM formulation for geometrically non-linear analysis of shells: curved triangular isoparametric elements,” Computational Mechanics, vol. 40, no. 1, pp. 185-200, 2007. · Zbl 1178.74163 · doi:10.1007/s00466-006-0094-1
[24] H. B. Coda and R. R. Paccola, “A positional FEM Formulation for geometrical non-linear analysis of shells,” Latin American Journal of Solids and Structures, vol. 5, no. 3, pp. 205-223, 2008.
[25] A. Ibrahimbegovic and R. L. Taylor, “On the role of frame-invariance in structural mechanics models at finite rotations,” Computer Methods in Applied Mechanics and Engineering, vol. 191, no. 45, pp. 5159-5176, 2002. · Zbl 1023.74048 · doi:10.1016/S0045-7825(02)00442-5
[26] M. L. Bucalem and S. H. Shimura Da Nóbrega, “Mixed formulation for general triangular isoparametric shell elements based on the degenerated solid approach,” Computers & Structures, vol. 78, no. 1, pp. 35-44, 2000. · doi:10.1016/S0045-7949(00)00077-8
[27] C. Sansour and F. G. Kollmann, “Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assessment of hybrid stress, hybrid strain and enhanced strain elements,” Computational Mechanics, vol. 24, no. 6, pp. 435-447, 2000. · Zbl 0959.74072 · doi:10.1007/s004660050003
[28] M. Greco and H. B. Coda, “Positional FEM formulation for flexible multi-body dynamic analysis,” Journal of Sound and Vibration, vol. 290, no. 3-5, pp. 1141-1174, 2006. · doi:10.1016/j.jsv.2005.05.018
[29] F. Cirak and R. Radovitzky, “A Lagrangian-Eulerian shell-fluid coupling algorithm based on level sets,” Computers & Structures, vol. 83, no. 6-7, pp. 491-498, 2005. · doi:10.1016/j.compstruc.2004.03.085
[30] I. Breslavsky, K. V. Avramov, Yu. Mikhlin, and R. Kochurov, “Nonlinear modes of snap-through motions of a shallow arch,” Journal of Sound and Vibration, vol. 311, no. 1-2, pp. 297-313, 2008. · doi:10.1016/j.jsv.2007.09.015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.