×

zbMATH — the first resource for mathematics

Chaos synchronization between two different fractional systems of Lorenz family. (English) Zbl 1181.37047
Summary: This work investigates chaos synchronization between two different fractional order chaotic systems of Lorenz family. The fractional order Lü system is controlled to be the fractional order Chen system, and the fractional order Chen system is controlled to be the fractional order Lorenz-like system. The analytical conditions for the synchronization of these pairs of different fractional order chaotic systems are derived by utilizing Laplace transform. Numerical simulations are used to verify the theoretical analysis using different values of the fractional order parameter.

MSC:
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
34C28 Complex behavior and chaotic systems of ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] P. L. Butzer and U. Westphal, An Introduction to Fractional Calculus, World Scientific, Singapore, 2000. · Zbl 0987.26005
[2] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, New York, NY, USA, 1993. · Zbl 0789.26002
[3] R. Hilfer, Ed., Applications of Fractional Calculus in Physics, World Scientific, River Edge, NJ, USA, 2000. · Zbl 0998.26002
[4] H. H. Sun, A. A. Abdelwahab, and B. Onaral, “Linear approximation of transfer function with a pole of fractional power,” IEEE Transactions on Automatic Control, vol. 29, no. 5, pp. 441-444, 1984. · Zbl 0532.93025 · doi:10.1109/TAC.1984.1103551
[5] E. Ahmed and A. S. Elgazzar, “On fractional order differential equations model for nonlocal epidemics,” Physica A, vol. 379, no. 2, pp. 607-614, 2007. · doi:10.1016/j.physa.2007.01.010
[6] A. M. A. El-Sayed, A. E. M. El-Mesiry, and H. A. A. El-Saka, “On the fractional-order logistic equation,” Applied Mathematics Letters, vol. 20, no. 7, pp. 817-823, 2007. · Zbl 1140.34302 · doi:10.1016/j.aml.2006.08.013
[7] N. Laskin, “Fractional market dynamics,” Physica A, vol. 287, no. 3-4, pp. 482-492, 2000. · doi:10.1016/S0378-4371(00)00387-3
[8] W.-C. Chen, “Nonlinear dynamics and chaos in a fractional-order financial system,” Chaos, Solitons & Fractals, vol. 36, no. 5, pp. 1305-1314, 2008. · doi:10.1016/j.chaos.2006.07.051
[9] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[10] M. Caputo, “Linear models of dissipation whose Q is almost frequency independent-II,” Geophysical Journal of the Royal Astronomical Society, vol. 13, pp. 529-539, 1967.
[11] E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the Atmospheric Sciences, vol. 20, pp. 130-141, 1963. · Zbl 1417.37129
[12] G. Chen and T. Ueta, “Yet another chaotic attractor,” International Journal of Bifurcation and Chaos, vol. 9, no. 7, pp. 1465-1466, 1999. · Zbl 0962.37013 · doi:10.1142/S0218127499001024
[13] J. Lü, G. Chen, and S. Zhang, “The compound structure of a new chaotic attractor,” Chaos, Solitons & Fractals, vol. 14, no. 5, pp. 669-672, 2002. · Zbl 1067.37042 · doi:10.1016/S0960-0779(02)00007-3
[14] I. Grigorenko and E. Grigorenko, “Chaotic dynamics of the fractional Lorenz system,” Physical Review Letters, vol. 91, no. 3, Article ID 034101, 4 pages, 2003. · Zbl 1234.49040 · doi:10.1103/PhysRevLett.91.034101
[15] C. Li and G. Peng, “Chaos in Chen/s system with a fractional order,” Chaos, Solitons & Fractals, vol. 22, no. 2, pp. 443-450, 2004. · Zbl 1060.37026 · doi:10.1016/j.chaos.2004.02.013
[16] J. G. Lu, “Chaotic dynamics of the fractional-order Lü system and its synchronization,” Physics Letters A, vol. 354, no. 4, pp. 305-311, 2006. · doi:10.1016/j.physleta.2006.01.068
[17] T. Zhou and C. Li, “Synchronization in fractional-order differential systems,” Physica D, vol. 212, no. 1-2, pp. 111-125, 2005. · Zbl 1094.34034 · doi:10.1016/j.physd.2005.09.012
[18] G. Peng, “Synchronization of fractional order chaotic systems,” Physics Letters A, vol. 363, no. 5-6, pp. 426-432, 2007. · Zbl 1197.37040 · doi:10.1016/j.physleta.2006.11.053
[19] Z.-M. Ge and W.-R. Jhuang, “Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor,” Chaos, Solitons & Fractals, vol. 33, no. 1, pp. 270-289, 2007. · Zbl 1152.34355 · doi:10.1016/j.chaos.2005.12.040
[20] C. Li and J. Yan, “The synchronization of three fractional differential systems,” Chaos, Solitons & Fractals, vol. 32, no. 2, pp. 751-757, 2007. · doi:10.1016/j.chaos.2005.11.020
[21] A. E. Matouk and H. N. Agiza, “Bifurcations, chaos and synchronization in ADVP circuit with parallel resistor,” Journal of Mathematical Analysis and Applications, vol. 341, no. 1, pp. 259-269, 2008. · Zbl 1131.37037 · doi:10.1016/j.jmaa.2007.09.067
[22] A. Uchida, S. Kinugawa, and S. Yoshimori, “Synchronization of chaos in two microchip lasers by using incoherent feedback method,” Chaos, Solitons & Fractals, vol. 17, no. 2-3, pp. 363-368, 2003. · doi:10.1016/S0960-0779(02)00375-2
[23] Y.-N. Li, L. Chen, Z.-S. Cai, and X.-Z. Zhao, “Study on chaos synchronization in the Belousov-Zhabotinsky chemical system,” Chaos, Solitons & Fractals, vol. 17, no. 4, pp. 699-707, 2003. · Zbl 1047.92054 · doi:10.1016/S0960-0779(02)00486-1
[24] B. Blasius, A. Huppert, and L. Stone, “Complex dynamics and phase synchronization in spatially extended ecological systems,” Nature, vol. 399, no. 6734, pp. 354-359, 1999. · doi:10.1038/20676
[25] K. M. Cuomo and A. V. Oppenheim, “Circuit implementation of synchronized chaos with applications to communications,” Physical Review Letters, vol. 71, no. 1, pp. 65-68, 1993. · doi:10.1103/PhysRevLett.71.65
[26] W. Deng, “Generalized synchronization in fractional order systems,” Physical Review E, vol. 75, no. 5, Article ID 056201, 7 pages, 2007. · doi:10.1103/PhysRevE.75.056201
[27] X. Wang and Y. He, “Projective synchronization of fractional order chaotic system based on linear separation,” Physics Letters A, vol. 372, no. 4, pp. 435-441, 2008. · Zbl 1217.37035 · doi:10.1016/j.physleta.2007.07.053
[28] K. Diethelm and N. J. Ford, “Analysis of fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 265, no. 2, pp. 229-248, 2002. · Zbl 1014.34003 · doi:10.1006/jmaa.2001.7194
[29] K. Diethelm, N. J. Ford, and A. D. Freed, “A predictor-corrector approach for the numerical solution of fractional differential equations,” Nonlinear Dynamics, vol. 29, no. 1-4, pp. 3-22, 2002. · Zbl 1009.65049 · doi:10.1023/A:1016592219341
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.