zbMATH — the first resource for mathematics

Existence of global attractors in \(L^p\) for \(m\)-Laplacian parabolic equation in \(\mathbb{R}^N\). (English) Zbl 1183.35050
Summary: We study the long-time behavior of solution for the \(m\)-Laplacian equation \[ u_t- \text{div}(|\nabla u|^{m-2}\nabla u)+ \lambda|u|^{m-2}u+ f(x,u)= g(x) \quad\text{in }\mathbb R^N\times\mathbb R^+, \] in which the nonlinear term \(f(x,u)\) is a function like \(f(x,u)= -h(x)|u|^{q-2}u\) with \(h(x)\geq0\), \(2\leq q<m\), or \(f(x,u)= a(x)|u|^{\alpha-2}u- h(x)|u|^{\beta-2}u\) with \(a(x)\geq h(x)\geq0\) and \(\alpha>\beta\geq m\). We prove the existence of a global \((L^2(\mathbb R^N),L^p(\mathbb R^N))\)-attractor for any \(p>m\).

35B41 Attractors
35K65 Degenerate parabolic equations
35K59 Quasilinear parabolic equations
35K15 Initial value problems for second-order parabolic equations
Full Text: DOI
[1] doi:10.1016/S0167-2789(98)00304-2 · Zbl 0953.35022
[2] doi:10.1016/j.jmaa.2005.05.003 · Zbl 1090.35040
[4] doi:10.1619/fesi.50.449 · Zbl 1180.35125
[5] doi:10.1016/j.jmaa.2007.03.093 · Zbl 1132.35016
[6] doi:10.1006/jdeq.1999.3694 · Zbl 0959.35103
[12] doi:10.1007/PL00001368 · Zbl 0988.35095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.