Song, Xinghua; Aigner, Martin; Chen, Falai; Jüttler, Bert Circular spline fitting using an evolution process. (English) Zbl 1185.65031 J. Comput. Appl. Math. 231, No. 1, 423-433 (2009). A circular spline curve consists of circular arcs and line segments which are joined with \(G^1\) continuity. The authors propose an evolution method for approximating a given sequence of points in three-dimensional space by a circular spline curve, which allows simple and explicit closest point computation. The method uses an independent set of shape parameters and extends previous work on planar curves. It is proved that the evolution process based on least-squares approximation is equivalent to a Gauss-Newton-type method. The numerical performance of the algorithm is also demonstrated. Reviewer: Aurelian Bejancu (Safat) Cited in 4 Documents MSC: 65D17 Computer-aided design (modeling of curves and surfaces) 65D10 Numerical smoothing, curve fitting 65D07 Numerical computation using splines 65Y20 Complexity and performance of numerical algorithms Keywords:circular spline; biarc; organized points; spatial curve fitting; evolution method; least-squares approximation; Gauss-Newton-type method; performance; algorithm × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Farouki, R. T., Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable, Geometry and Computing, vol. 1 (2008), Springer: Springer Berlin · Zbl 1144.51004 [2] Bauer, U.; Polthier, K., Parametric reconstruction of bent tube surfaces, (Proc. Cyber World (2007), IEEE Press), 465-474 [3] Wang, W.; Joe, B., Robust computation of the rotation minimizing frame for sweep surface modeling, Comput. Aided Des., 29, 5, 379-391 (1997) [4] Aichholzer, O.; Aurenhammer, F.; Hackl, T.; Jüttler, B.; Oberneder, M.; Šír, Z., Computational and structural advantages of circular boundary representation, (Dehne, F.; Sack, J.-R.; Zeh, N., Algorithms and Data Structures. Algorithms and Data Structures, Lecture Notes in Computer Science, vol. 4619 (2007), Springer), 374-385 · Zbl 1209.68574 [5] M.A. Sabin, The use of circular arcs to form curves interpolated through empirical data points, Technical Report VTO/MS/164, British Aircraft Corporation, 1976; M.A. Sabin, The use of circular arcs to form curves interpolated through empirical data points, Technical Report VTO/MS/164, British Aircraft Corporation, 1976 [6] Nutbourne, A. W.; Martin, R. R., Differential Geometry Applied to Curve and Surface Design, Vol. 1 (1988), Ellis Horwood: Ellis Horwood Chichester [7] Hoschek, J., Circular splines, Comput. Aided Des., 24, 611-618 (1992) · Zbl 0763.65005 [8] Meek, D. S.; Walton, D. J., Approximation of discrete data by \(G^1\) arc splines, Comput. Aided Des., 24, 301-306 (1992) · Zbl 0755.65010 [9] Meek, D. S.; Walton, D. J., Approximating smooth planar curves by arc splines, J. Comput. Appl. Math., 59, 2, 221-231 (1995) · Zbl 0836.65010 [10] Meek, D. S.; Walton, D. J., Planar osculating arc splines, Comput. Aided Geom. Des., 13, 7, 653-671 (1996) · Zbl 0875.68874 [11] Meek, D. S.; Walton, D. J., An arc spline approximation to a clothoid, J. Comput. Appl. Math., 170, 1, 59-77 (2004) · Zbl 1050.65016 [12] Yang, S. N.; Du, W. C., Numerical methods for approximating digitized curves by piecewise circular arcs, J. Comput. Appl. Math., 66, 1-2, 557-569 (1996) · Zbl 0854.65012 [13] Piegl, L. A.; Tiller, W., Data approximation using biarcs, Eng. Comput., 18, 59-65 (2002) · Zbl 1021.68772 [14] Kass, M.; Witkin, A.; Terzopoulos, D., Snakes: Active contour models, Int. J. Comput. Vis., 24, 321-331 (1987) [15] Blake, A.; Isard, M., Active Contours (1998), Springer: Springer New York [16] Wang, W.; Pottmann, H.; Liu, Y., Fitting B-spline curves to point clouds by curvature-based squared distance minimization, ACM Trans. Graph., 25, 2, 214-238 (2006) [17] Liu, Y.; Wang, W., A revisit to least squares orthogonal distance fitting of parametric curves and surfaces, (Chen, F.; Jüttler, B., Advances in Geometric Modelling and Processing. Advances in Geometric Modelling and Processing, Lecture Notes in Computer Science, vol. 4975 (2008), Springer), 384-397 [18] Aigner, M.; Šír, Z.; Jüttler, B., Evolution-based least-squares fitting using Pythagorean hodograph spline curves, Comput. Aided Geom. Des., 24, 6, 310-322 (2007) · Zbl 1171.65315 [19] Aigner, M.; Jüttler, B., Approximation flows in shape manifolds, (Chenin, P.; Lyche, T.; Schumaker, L. L., Curve and Surface Design: Avignon 2006 (2007), Nashboro Press), 1-10 · Zbl 1130.65025 [20] Engl, H. W.; Hanke, M.; Neubauer, A., Regularization of Inverse Problems (1996), Kluwer: Kluwer Dordrecht · Zbl 0859.65054 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.