×

zbMATH — the first resource for mathematics

Compact operators defined on 2-normed and 2-probabilistic normed spaces. (English) Zbl 1203.47096
From the Introduction: In this paper, we first investigate compact operators between 2-normed spaces. Then, according to Menger’s probabilistic approach, we discuss 2-probabilistic normed spaces and extend the main ideas from the first section to operators defined between 2-probabilistic normed spaces.
MSC:
47S50 Operator theory in probabilistic metric linear spaces
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] S. Gähler, “2-metrische Räume und ihre topologische Struktur,” Mathematische Nachrichten, vol. 26, pp. 115-148, 1963. · Zbl 0117.16003 · doi:10.1002/mana.19630260109
[2] S. Gähler, “Lineare 2-normierte Räume,” Mathematische Nachrichten, vol. 28, pp. 1-43, 1964. · Zbl 0142.39803 · doi:10.1002/mana.19640280102
[3] H.-Y. Chu, C.-G. Park, and W.-G. Park, “The Aleksandrov problem in linear 2-normed spaces,” Journal of Mathematical Analysis and Applications, vol. 289, no. 2, pp. 666-672, 2004. · Zbl 1045.46002 · doi:10.1016/j.jmaa.2003.09.009
[4] R. W. Freese and Y. J. Cho, Geometry of Linear 2-Normed Spaces, Nova Science, Hauppauge, NY, USA, 2001. · Zbl 1051.46001
[5] K. S. Ha, Y. J. Cho, S. S. Kim, and M. S. Khan, “Strictly convex linear 2-normed spaces,” Mathematische Nachrichten, vol. 146, pp. 7-16, 1990. · Zbl 0751.46016 · doi:10.1002/mana.19901460102
[6] K. Menger, “Statistical metrics,” Proceedings of the Natational Academy of the United States of America, vol. 28, pp. 535-537, 1942. · Zbl 0063.03886 · doi:10.1073/pnas.28.12.535
[7] Y. J. Cho, P. C. S. Lin, S. S. Kim, and A. Misiak, Theory of 2-Inner Product Spaces, Nova Science, Huntington, NY, USA, 2001. · Zbl 1149.57317
[8] A. Narayanan and S. Vijayabalaji, “Fuzzy n-normed linear space,” International Journal of Mathematics and Mathematical Sciences, no. 24, pp. 3963-3977, 2005. · Zbl 1095.46512 · doi:10.1155/IJMMS.2005.3963 · eudml:52643
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.