Kiselman, Christer Oscar Generalized elementary functions. (English) Zbl 1520.30056 Complex Var. Elliptic Equ. 68, No. 6, 918-931 (2023). Summary: Ramon Edgar Moore and Alexander M. Gofen introduced a generalization of Joseph Liouville’s concept of elementary functions. Gofen even defined two variants of these, viz. scalar generalized elementary functions and vector generalized elementary functions, and formulated a conjecture concerning them. We prove that, for some modified conjectures, the two classes are different. MSC: 30E99 Miscellaneous topics of analysis in the complex plane 34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations 34A34 Nonlinear ordinary differential equations and systems Keywords:ordinary differential equations; elementary functions; generalized elementary functions Biographic References: Liouville, Joseph; Fels Ritt, Joseph; Gofen, Alexander × Cite Format Result Cite Review PDF Full Text: DOI OA License References: [1] Lützen, J. Joseph Liouville 1809-1882: master of pure and applied mathematics. New York (NY): Springer-Verlag; 1990. xix + 884 p. (Studies in the history of mathematics and physical sciences; Vol. 15). · Zbl 0701.01015 [2] Ritt, JF., Integration in finite terms. Liouville’s theory of elementary methods (1948), New York (NY): Columbia University Press, New York (NY) · Zbl 0031.20603 [3] Ostrowski, A., Sur l’intégrabilité élémentaire de quelques classes d’expressions, Comment Math Helv, 18, 283-308 (1946) · Zbl 0063.06063 [4] Rosenlicht, M., Liouville’s theorem on functions with elementary integrals, Pacific J Math, 24, 153-161 (1968) · Zbl 0155.36702 [5] Rosenlicht, M., Integration in finite terms, Amer Math Monthly, 79, 963-972 (1972) · Zbl 0249.12106 [6] Rosenlicht, M., Liouville’s theory of elementary functions, Pacific J Math, 65, 2, 485-492 (1976) · Zbl 0318.12107 [7] Risch, RH., The problem of integration in finite terms, Trans Amer Math Soc, 139, 167-189 (1969) · Zbl 0184.06702 [8] Risch, RH., The solution of the problem of integration in finite terms, Bull Amer Math Soc, 76, 605-608 (1970) · Zbl 0196.06801 [9] Risch, RH., Implicitly elementary integrals, Proc Amer Math Soc, 57, 1, 1-7 (1976) · Zbl 0339.12105 [10] Risch, RH., Algebraic properties of the elementary functions of analysis, Amer J Math, 101, 4, 743-759 (1979) · Zbl 0438.12016 [11] Kasper, T., Integration in finite terms: the Liouville theory, Math Mag, 53, 4, 195-201 (1980) · Zbl 0465.12010 [12] Bronstein, M. Symbolic integration. I. Transcendental functions. With a foreword by B. F. Caviness. Berlin: Springer-Verlag; 1997. xiv + 299 p. (Algorithms and computation in mathematics; 1). · Zbl 0880.12005 [13] van der Put, M, Singer, MF. Galois theory of differential equations. Berlin: Springer-Verlag; 2003. xviii + 438 p. (Grundlehren der mathematischen Wissenschaften; 328). · Zbl 1036.12008 [14] Conrad, B. Impossibility theorems for elementary integration. Manuscript. 2005. 13 pp. [15] Gofen, A., Unremovable ‘removable’ singularities, Complex Var Elliptic Equ, 53, 7, 633-642 (2008) · Zbl 1159.34002 [16] Gofen, AM., The ordinary differential equations and automatic differentiation unified, Complex Var Elliptic Equ, 54, 9, 825-854 (2009) · Zbl 1178.34118 [17] Crespo, T, Hajto, Z. Algebraic groups and differential Galois theory. Providence (RI): American Mathematical Society; 2011. xiv + 225 p. (Graduate studies in mathematics; 122). · Zbl 1215.12001 [18] Khovanskii, A. Comments on J. F. Ritt’s book “Integration in finite terms.” 2019. [2019 Aug 6, 52 pp; accessed 2021 Feb 28]. arXiv1908.02048v1. [19] Khovanskii, A., Integrability in finite terms and actions of Lie groups, Mosc Math J, 19, 2, 329-341 (2019) · Zbl 1473.12007 [20] Moore, RE., Interval analysis (1966), Englewood Cliffs (NJ): Prentice Hall, Englewood Cliffs (NJ) · Zbl 0176.13301 [21] Gofen, AM. The conjecture. 2020. (Dated September 2020). [Accessed 2021 Mar 05]. Available from: http://taylorcenter.org/Gofen/Conjecture.pdf. [22] Flanders, H., Functions not satisfying implicit polynomial ODE, J Differential Equations, 240, 1, 164-171 (2007) · Zbl 1133.34004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.