The quantized Baker’s transformation. (English) Zbl 0664.58045

A quantum analogue of the Baker’s transformation is constructed using a specially developed quantization procedure. We obtain a unitary operator acting on an N-dimensional Hilbert space, with N finite (and even), that has similar properties to the classical Baker’s map, and reduces to it in the classical limit, which corresponds here to \(N\to \infty\). The operator can be described as a very simple, fully explicit \(N\times N\) matrix. Numerical investigations confirm that this model has non-trivial features which ought to represent quantal manifestations of classical chaoticity. The quasi-energy spectrum is given by irrational eigenangles, leading to no recurrences. Most eigenfunctions look irregular, but some exhibit puzzling regular features, such as peaks at coordinate values belonging to periodic orbits of the classical Baker’s map. We compare the quantal and classical time-evolutions, as applied to initially coherent quasi-classical states: the evolving states stay in close agreement for short times but seem to lose all relationship to each other beyond a critical time of the order of \(\log_ 2N\sim -\log \hslash\).


58Z05 Applications of global analysis to the sciences
53D50 Geometric quantization
81S10 Geometry and quantization, symplectic methods
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
Full Text: DOI


[1] Lichtenberg, A. J.; Lieberman, M. A., (Regular and Stochastic Motion (1983), Benjamin: Benjamin New York) · Zbl 0506.70016
[2] Ford, J., (Bai-lin, Hao, Directions in Chaos, Vol. II (1988), World Scientific Publishing: World Scientific Publishing Singapore), 128 · Zbl 0651.58002
[3] Balazs, N. L.; Voros, A., Europhys. Lett, 4, 1089 (1987)
[4] Schwinger, J., (Quantum Kinematics and Dynamics (1970), Benjamin: Benjamin New York), 63-72 · Zbl 1094.81500
[5] Souriau, J.-M., (Structure des Systèmes Dynamiques (1970), Dunod: Dunod Paris), 319-325 · Zbl 0186.58001
[6] Casati, G.; Chirikov, B. V.; Izralev, F. M.; Ford, J., (Casati, G.; Ford, J., Stochastic Behavior in Classical and Quantum Hamiltonian Systems (1979), Springer: Springer New York), 334 · Zbl 0399.00004
[7] Berry, M. V.; Balazs, N. L.; Tabor, M.; Voros, A., Ann. Phys. (N.Y.), 122, 26 (1979)
[8] Graham, R., Z. Phys. B, 59, 75 (1985)
[9] Kus, M.; Scharf, R.; Haake, F., Z. Phys. B, 66, 129 (1987)
[10] Balazs, N. L.; Voros, A., Phys. Rep, 143, 109 (1986), Sect. VIII.5
[11] Hannay, J. H.; Berry, M. V., Physica D, 1, 267 (1980) · Zbl 1194.81107
[12] Eckhardt, B., J. Phys. A, 19, 1823 (1986) · Zbl 0617.58014
[13] Robnik, M.; Berry, M. V., J. Phys. A, 19, 669 (1986)
[14] Balazs, N. L.; Jennings, B. K., Phys. Rep, 104, 347 (1984)
[15] Percival, I. C.; Vivaldi, F., Physica D, 25, 105 (1987) · Zbl 0616.58039
[16] Bohigas, O.; Giannoni, M.-J., (Dehesa, J. S.; etal., Mathematical and Computational Methods in Nuclear Physics (1984), Springer: Springer New York), 1 · Zbl 1119.81326
[17] Izrailev, F. M., Phys. Rev. Lett, 56, 541 (1986)
[18] preprint 88-45 (Novosibirsk, 1988).; preprint 88-45 (Novosibirsk, 1988).
[19] Bogomolnyi, E. B., JETP Lett, 44, 561 (1986)
[20] Berry, M. V.; Balazs, N. L., J. Phys. A, 12, 625 (1979) · Zbl 0396.70018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.