×

Efficient computation of lod scores: Genotype elimination, genotype redefinition, and hybrid maximum likelihood algorithms. (English) Zbl 0663.92009

Calculation of multilocus lod scores presents challenging problems in numerical analysis, combinatorics, programming, and genetics. It is possible to accelerate these computations by exploiting the simple pedigree structure of a CEPH-type pedigree consisting of a nuclear family plus all four grandparents. G. M. Lathrop, J. M. Lalouel and R. L. White [Genet. Epidemiology 3, 39-52 (1986)] have done this by introducing likelihood factorization and transformation rules and E. S. Lander and P. Green [Proc. Natl. Acad. Sci. USA 84, 2363-2367 (1987)] by the method of ‘hidden Markov chains’. The present paper explores an alternative approach based on genotype redefinition in the grandparents and systematic phase elimination in all pedigree members. All three approaches accelerate the computation of a single likelihood. Equally relevant to multilocus mapping are search strategies for finding the maximum likelihood estimates of recombination fractions. Hybrid algorithms that start with the EM algorithm and switch midway to quasi- Newton algorithms show promise. These issues are investigated in the context of a simulated 10 locus example. The same example allows us to illustrate a simple strategy for determining locus order.

MSC:

92D10 Genetics and epigenetics
62P10 Applications of statistics to biology and medical sciences; meta analysis
65C99 Probabilistic methods, stochastic differential equations
Full Text: DOI

References:

[1] DOI: 10.1073/pnas.84.22.8006 · doi:10.1073/pnas.84.22.8006
[2] L. L. Cavalli-Sforza, and W. F. Bodmer(1971 ). The Genetics of Human Populations , p.882 , formula 83. San Francisco: W. H. Freeman.
[3] Dempster S.P., J. Roy. Stat. Soc. (Lond. Ser. B) 39 pp 1– (1977)
[4] DOI: 10.1137/1019005 · Zbl 0356.65041 · doi:10.1137/1019005
[5] DOI: 10.1016/0092-8674(87)90158-9 · doi:10.1016/0092-8674(87)90158-9
[6] DOI: 10.1146/annurev.bb.08.060179.001211 · doi:10.1146/annurev.bb.08.060179.001211
[7] Lalouel J. M., Heredity 38 (1) pp 61– (1977)
[8] DOI: 10.1073/pnas.84.8.2363 · doi:10.1073/pnas.84.8.2363
[9] Lange K., Hum. Hered. 33 pp 291– (1983)
[10] Lange K., Hum. Hered. 25 pp 95– (1975)
[11] Lange K., Am. J. Hum. Genet. 40 pp 250– (1987)
[12] Lange K., IEEE Transactions on Medical Imaging 6 pp 106– (1987)
[13] Lange K., Programs for pedigree analysis. Department of Biomathematics (1987)
[14] Lathrop G. M., Am. J. Hum. Genet. 42 pp 498– (1988)
[15] DOI: 10.1002/gepi.1370030105 · doi:10.1002/gepi.1370030105
[16] Leppert M., Am. J. Hum. Genet. 39 pp 425– (1986)
[17] Lewitt R. M., IEEE Transactions on Medical Imaging 5 pp 16– (1986)
[18] P. M. Mamelka, B. Dyke, and J. W. MacCluer(1987 ). Pedigree/Draw for the Apple Macintosh. Southwest Foundation for Biomedical Research, San Antonio, TX.
[19] DOI: 10.1016/0888-7543(87)90110-8 · doi:10.1016/0888-7543(87)90110-8
[20] Ott J., Am. J. Hum. Genet. 26 pp 588– (1974)
[21] Ott J., Ann. Hum. Genet. 40 pp 443– (1977)
[22] Ott J., Ann. Hum. Genet. 42 pp 255– (1978)
[23] Ott J., Am. J. Hum. Genet. 31 pp 161– (1979)
[24] C. R. Rao(1973 ). Linear Statistical Inference and its Applications , 2nd edition , pp.385 -389 . New York: Wiley.
[25] DOI: 10.1137/1026034 · Zbl 0536.62021 · doi:10.1137/1026034
[26] Smith C. A. B., Ann. Hum. Genet. 21 pp 254– (1957)
[27] DOI: 10.1093/imammb/1.1.31 · doi:10.1093/imammb/1.1.31
[28] DOI: 10.1016/0888-7543(87)90050-4 · doi:10.1016/0888-7543(87)90050-4
[29] DOI: 10.1038/313101a0 · doi:10.1038/313101a0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.