×

On measurability of quasi-continuous and some related maps. (English) Zbl 0649.54005

Let X, Y be topological spaces, \({\mathcal A}\) any family of maps from X into Y. \({\mathcal S}({\mathcal A})\) denotes the smallest \(\sigma\)-algebra of subsets of X with respect to which all maps belonging to \({\mathcal A}\) are measurable. If X is a perfectly normal space, Y is a \(T_ 1\)-space with at least two points and \({\mathcal A}\) consists of all quasi-continuous maps [S. Kempisty, Fundam. Math. 19, 184-197 (1932; Zbl 0005.19802)] (resp. irresolute maps [S. G. Crossley and S. K. Hildebrand, Fundam. Math. 74, 233-254 (1972; Zbl 0206.515)]) then \({\mathcal S}({\mathcal A})\) coincides with the \(\sigma\)-algebra of sets with the Baire property.
For upper and lower measurability of multivalued maps analogous theorems are true.
Reviewer: J.Ewert

MSC:

54C60 Set-valued maps in general topology
54C08 Weak and generalized continuity
28A20 Measurable and nonmeasurable functions, sequences of measurable functions, modes of convergence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] C. Berge,Espaces topologiques, fonctions multivoques, Dunod, Paris, 1959.MR 21: 4401 · Zbl 0088.14703
[2] Á. Császár,General topology, Akadémiai Kiadó, Budapest, 1978.MR 57: 13812
[3] S. G. Crossley andS. K. Hildebrand, Semi-closure,Texas J. Sci. 22 (1971), 99–112.RŽ (Mat) 1971: 11A427
[4] S. G. Crossley andS. K. Hildebrand, Semi-topological properties,Fund. Math. 74 (1972), 233–253.MR 46: 846 · Zbl 0206.51501
[5] J. Ewert,Przekształcenia wielowartosciowe i przestrzenie bitopologiczne (Multivalued mappings and bitopological spaces), Słupsk, 1985. (In Polish)
[6] J. Ewert andT. Lipski, Quasi-continuous multivalued mappings,Math. Slovaca 33 (1983), 69–74.Zbl 531: 54019 · Zbl 0531.54019
[7] Z. Grande andE. Strońska, Sur la mesurabilité de fonctions quasi-continues,Problemy Mat. (Bydgoszcz)9 (1987), 5–22.
[8] N. Levine, Semi-open sets and semi-continuity in topological spaces,Amer. Math. Monthly 70 (1963), 36–41.MR 29: 4025 · Zbl 0113.16304 · doi:10.2307/2312781
[9] S. N. Maheshwari andS. S. Thakur, On {\(\alpha\)}-irresolute mappings,Tamkang J. Math. 11 (1981), 209–214.Zbl 485: 54009
[10] A. S. Mashhour, I. A. Hasanein andS. N. El-Deeb, {\(\alpha\)}-continuous and {\(\alpha\)}-open mappings,Acta Math. Hungar. 41 (1983), 213–218.MR 85j: 54013 · Zbl 0534.54006 · doi:10.1007/BF01961309
[11] T. Neubrunn, Strongly quasi-continuous multivalued mappings,General topology and its relations to modern analysis and algebra, VI (Proc. Sixth Prague Topological Symp.), 1986; 351–359.
[12] O. Njåstad, On some classes of nearly open sets,Pacific J. Math. 15 (1965), 961–970.MR 33: 3245 · Zbl 0137.41903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.