Quasiconformal maps of cylindrical domains. (English) Zbl 0674.30017

Contrary to the plane case there is no simple topological or metric characterization of domains D in \({\mathbb{R}}^ 3\) which are quasiconformally equivalent to the unit ball \(B^ 3\). In this paper necessary and sufficient conditions for cylindrical domains \(D=G\times {\mathbb{R}}\) are given. Here G is a simply connected plane domain.
For example, D is quasiconformally equivalent to \(B^ 3\) iff G is finitely connected on the boundary and satisfies an internal chord arc condition or G is BLD-homeomorphic to a disk or to a half plane. The internal chord arc condition means that if u and v are points on the prime end boundary \(\partial^*G\), then \(\sigma (u,v)\leq c\delta_ G(u,v)\) where \(\sigma\) denotes the length of the shorter component of \(\partial^*G\setminus \{u,v\}\) and \(\delta_ G\) is the internal distance in the prime end compactification of G. A BLD-homeomorphism is simply a locally L-bilipschitz homeomorphism for some \(L\geq 1\). The proofs use extensively various John-type properties of G [O. Martio and J. Sarvas, Ann. Acad. Sci. Fenn., Ser. A I 4, 383-401 (1979; Zbl 0406.30013)].
Reviewer: O.Martio


30C62 Quasiconformal mappings in the complex plane
Full Text: DOI


[1] [Ge1]Gehring, F. W., Dilatations of quasiconformal boundary correspondences.Duke Math. J., 39 (1972), 89–95. · Zbl 0234.30018 · doi:10.1215/S0012-7094-72-03912-9
[2] [Ge2] –, Extension of quasiisometric embeddings of Jordan curves.Complex Variables, 5 (1986), 245–263. · Zbl 0603.30024
[3] [GM]Gehring, F. W. &Martio, O., Quasiextremal distance domains and extension of quasiconformal mappings.J. Analyse Math., 45 (1985), 181–206. · Zbl 0596.30031 · doi:10.1007/BF02792549
[4] [GV]Gehring, F. W. &Väisälä, J., The coefficients of quasiconformality of domains in space.Acta Math., 114 (1965), 1–70. · Zbl 0134.29702 · doi:10.1007/BF02391817
[5] [Jo]John, F., Rotation and strain.Comm. Pure Appl. Math., 14 (1961), 391–413. · Zbl 0102.17404 · doi:10.1002/cpa.3160140316
[6] [La]Latfullin, T. G., Geometric characterization of quasi-isometric images of the half plane.Teoriya otobrazhenii, ee obobshcheniya i prilozheniya, Naukova Dumka, Kiev (1982), 116–126 (Russian).
[7] [MS]Martio, O. &Sarvas, J., Injectivity theorems in plane and space.Ann. Acad. Sci. Fenn. Ser. A I Math., 4 (1979), 383–401. · Zbl 0406.30013
[8] [MV]Martio, O. & Väisälä, J., Elliptic equations and maps of bounded length distortion. To appear inMath. Ann.
[9] [Nä]Näkki, R., Prime ends and quasiconformal mappings.J. Analyse Math., 35 (1979), 13–40. · Zbl 0432.30015 · doi:10.1007/BF02791061
[10] [NV]Näkki, R. & Väisälä, J., John disks. To appear.
[11] [Po]Pommerenke, C., One-sided smoothness conditions and conformal mapping.J. London Math. Soc., 26 (1982), 77–82. · doi:10.1112/jlms/s2-26.1.77
[12] [TV]Tukia, P. &Väisälä, J., Quasisymmetric embeddings of metric spaces.Ann. Acad. Sci. Fenn. Ser. A I Math., 5 (1980), 97–114. · Zbl 0403.54005
[13] [Vä1]Väisälä, J., On quasiconformal mappings in space.Ann. Acad. Sci. Fenn. Ser. A I Math., 298 (1961), 1–36.
[14] [Vä2]Väisälä, J.,Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Mathematics 229. Springer-Verlag, 1971. · Zbl 0221.30031
[15] [Vä3] –, Quasi-symmetric embeddings in euclidean spaces.Trans. Amer. Math. Soc., 264 (1981), 191–204. · Zbl 0456.30018 · doi:10.1090/S0002-9947-1981-0597876-7
[16] [Vä4] –, Quasimöbius maps.J. Analyse Math., 44 (1985), 218–234. · Zbl 0593.30022 · doi:10.1007/BF02790198
[17] [Vä5] –, Uniform domains.Tôhoku Math. J., 40 (1988), 101–118. · Zbl 0627.30017 · doi:10.2748/tmj/1178228081
[18] [Vä6] –, Quasisymmetric maps of products of curves into the plane.Rev. Roumaine Math. Pures Appl., 33 (1988), 147–156. · Zbl 0653.30010
[19] [Vä7] –, Homeomorphisms of bounded length distortion.Ann. Acad. Sci. Fenn. Ser. A I Math., 12 (1987), 303–312. · Zbl 0653.30009
[20] [Zo]Zorich, V. A., Determination of boundary elements by means of sections.Dokl. Akad. Nauk SSSR, 164 (1965), 736–739 (Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.