×

Multibump solutions of nonlinear periodic Schrödinger equations in a degenerate setting. (English) Zbl 1070.35083

Summary: We prove the existence of infinitely many geometrically distinct two bump solutions of periodic superlinear Schrödinger equations of the type \(-\Delta u+ V(x)u= f(x,u)\), where \(x\in\mathbb R^N\) and \(\lim_{|x|\to\infty}u(x)= 0\). The solutions we construct change sign and have exactly two nodal domains. The usual multibump constructions for these equations rely on strong non-degeneracy assumptions. We present a new approach that only requires a weak splitting condition. In the second part of the paper we exhibit classes of potentials \(V\) for which this splitting condition holds.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35J60 Nonlinear elliptic equations
47H07 Monotone and positive operators on ordered Banach spaces or other ordered topological vector spaces
Full Text: DOI

References:

[1] DOI: 10.1007/BF00380816 · Zbl 0745.35044 · doi:10.1007/BF00380816
[2] Sulem C., Applied Mathematical Sciences 139, in: The Nonlinear Schrödinger Equation (1999)
[3] DOI: 10.1007/978-3-642-86458-2_2 · doi:10.1007/978-3-642-86458-2_2
[4] P. H. Rabinowitz, Nonlinear Analysis (Quaderni, Scuola Normale Superiore, Pisa, 1991) pp. 307–317.
[5] Coti Zelati V., Commun. Pure Appl. Math. 45 pp 1217–
[6] DOI: 10.1512/iumj.1992.41.41052 · Zbl 0796.35043 · doi:10.1512/iumj.1992.41.41052
[7] DOI: 10.1016/0022-0396(92)90145-D · Zbl 0766.35009 · doi:10.1016/0022-0396(92)90145-D
[8] DOI: 10.1016/S0362-546X(97)00689-5 · Zbl 0952.35047 · doi:10.1016/S0362-546X(97)00689-5
[9] Kryszewski W., Adv. Differential Equations 3 pp 441– · Zbl 0725.34023
[10] DOI: 10.1080/03605309608821233 · Zbl 0864.35036 · doi:10.1080/03605309608821233
[11] DOI: 10.1007/s002080050248 · Zbl 0927.35103 · doi:10.1007/s002080050248
[12] DOI: 10.1007/BF01444526 · Zbl 0731.34050 · doi:10.1007/BF01444526
[13] DOI: 10.1007/BF02570817 · Zbl 0725.58017 · doi:10.1007/BF02570817
[14] DOI: 10.1090/S0894-0347-1991-1119200-3 · doi:10.1090/S0894-0347-1991-1119200-3
[15] Séré É., Ann. Inst. H. Poincaré Anal. Non Linéaire 10 pp 561– · Zbl 0803.58013 · doi:10.1016/S0294-1449(16)30205-0
[16] DOI: 10.1090/conm/198/02518 · doi:10.1090/conm/198/02518
[17] DOI: 10.1080/03605309908821434 · Zbl 0930.35064 · doi:10.1080/03605309908821434
[18] DOI: 10.1081/PDE-120028842 · Zbl 1140.35410 · doi:10.1081/PDE-120028842
[19] DOI: 10.1142/S0219199701000494 · Zbl 1076.35037 · doi:10.1142/S0219199701000494
[20] DOI: 10.1007/PL00004276 · Zbl 0871.34028 · doi:10.1007/PL00004276
[21] DOI: 10.1007/s005260050064 · Zbl 0876.34055 · doi:10.1007/s005260050064
[22] Ackermann N., Math. Z. 248 pp 423– · JFM 54.0057.01
[23] DOI: 10.1007/978-1-4757-2061-7 · doi:10.1007/978-1-4757-2061-7
[24] DOI: 10.1515/9783110809374 · doi:10.1515/9783110809374
[25] Müller-Pfeiffer E., J. London Math. Soc. 31 pp 91–
[26] DOI: 10.1006/jdeq.2000.3867 · Zbl 0995.58006 · doi:10.1006/jdeq.2000.3867
[27] DOI: 10.1016/0022-247X(74)90025-0 · Zbl 0286.49015 · doi:10.1016/0022-247X(74)90025-0
[28] DOI: 10.1007/978-3-662-04194-9 · doi:10.1007/978-3-662-04194-9
[29] Lions P.-L., Ann. Inst. H. Poincaré Anal. Non Linéaire 1 pp 223– · Zbl 0704.49004 · doi:10.1016/S0294-1449(16)30422-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.