Simulation of multiple scattering in the systems with complicated phase function. (English) Zbl 1360.78024

Summary: We consider simulation of multiple scattering of waves in isotropic and anisotropic media. The focus is on the construction of the phase function interpolation for the single scattering. The procedure is based on the construction of the adaptive partitioning of the angular variables that determine the phase function. The developed interpolation method allows us rather quickly to perform calculations for systems with very complicated phase function. Application of the proposed method is illustrated by calculating the multiple scattering of light in a nematic liquid crystal (NLC) which presents the uniaxial anisotropic system. For this system the grid corresponding to the adaptive partitioning is constructed and the transition to the diffusion regime for the photon distribution is presented.


78A45 Diffraction, scattering
78A48 Composite media; random media in optics and electromagnetic theory
Full Text: DOI Link


[1] Henyey, L. C.; Greenstein, J. L., Diffuse radiation in the galaxy, Astrophys. J., 93, 70-83, (1941)
[2] Cornette, W. M.; Shanks, J. G., Physical reasonable analytic expression for the single-scattering phase function, Appl. Opt., 31, 16, 3152-3160, (1992)
[3] Gayet, J.-F.; Mioche, G.; Bugliaro, L.; Protat, A.; Minikin, A.; Wirth, M.; Dornbrack, A.; Shcherbakov, V.; Mayer, B.; Garnier, A.; Gourbeyre, C., On the observation of unusual high concentration of small chain-like aggregate ice crystals and large ice water contents near the top of a deep convective cloud during the CIRCLE-2 experiment, Atmos. Chem. Phys., 12, 727-744, (2012)
[4] Baran, A. J.; Gayet, J.-F.; Shcherbakov, V., On the interpretation of an unusual in-situ measured ice crystal scattering phase function, Atmos. Chem. Phys., 12, 9355-9364, (2012)
[5] Ulanowski, Z.; Hesse, E.; Kaye, P. H.; Baran, A. J., Light scattering by complex ice-analogue crystals, J. Quant. Spectrosc. Radiat. Transfer, 100, 382-392, (2006)
[6] Bai, L.; Tang, S. Q.; Wu, Z. S.; Xie, P. H.; Wang, S. M., Study of random sample scattering phase functions of polydisperse atmospheric aerosol in ultraviolet band, Acta Phys. Sin., 59, 1749-1755, (2010)
[7] Bai, L.; Wu, Z. S.; Tang, S. Q.; Li, M.; Xie, P. H.; Wang, S. M., Study on phase function in Monte Carlo transmission characteristics of poly-disperse aerosol, Opt. Eng., 50, 1-8, (2011), 016002
[8] Setijadi, E.; Matsushima, A.; Tanaka, N.; Hendrantoro, G., Effect of temperature and multiple scattering on rain attenuation of electromagnetic waves by a simple spherical model, Prog. Electromagn. Res., 99, 339-354, (2009)
[9] Haltrin, V. I., Analytical approximations to seawater optical phase functions of scattering, Proc. SPIE, 5544, 356-363, (2004)
[10] Freda, W.; Krl, T.; Martynov, O. V.; Shybanov, E. B.; Hapter, R., Measurements of scattering function of sea water in southern baltic, Eur. Phys. J. S. T., 144, 147-154, (2007)
[11] Brown, O. B.; Gordon, H. R., Two component mie-scattering models of sargasso sea particles, Appl. Opt., 12, 2461-2465, (1973)
[12] Otremba, Z., Oil droplets as light absorbents in seawater, Opt. Express, 15, 14, 8592-8597, (2007)
[13] Otremba, Z.; Piskozub, J., Polarized phase functions in oil-in-water emulsion, Opt. Appl., 39, 1, 129-133, (2009)
[14] Wang, L. H.; Jacques, S. L.; Zheng, L. Q., MCML—monte Carlo modeling of light transport in multi-layered tissues, Comput. Methods Programs Biomed., 47, 131-146, (1995)
[15] Balbas, E. M.; French, P. J., Shape based Monte Carlo code for light transport in complex heterogeneous tissues, Opt. Express, 15, 14086-14098, (2007)
[16] Hammer, M.; Yaroslavsky, A. N.; Schweitzer, D., A scattering phase function for blood with physiological haematocrit, Phys. Med. Biol., 46, 65-69, (2001)
[17] Binzoni, T.; Leung, T. S.; Gandjbakhche, A. H.; Rüfenacht, D.; Delpy, D. T., The use of the henyey-greenstein phase function in Monte Carlo simulations in biomedical optics, Phys. Med. Biol., 51, N313-N322, (2006)
[18] Chicea, D.; Turcu, I., Testing a new multiple light scattering phase function using RWMCS, J. Optoelectron. Adv. Mater., 8, 4, 1516-1519, (2006)
[19] Gentle, J. E., Random number generation and Monte Carlo methods, (2003), Springer New York · Zbl 1028.65004
[20] van Tiggelen, B.; Stark, H., Nematic liquid crystals as a new challenge for radiative transfer, Rev. Modern Phys., 72, 1017, (2000)
[21] Aksenova, E. V.; Kokorin, D. I.; Romanov, V. P., Simulation of radiation transfer and coheren backscattering in nematic liquid crystals, Phys. Rev. E, 89, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.