×

On computing linearizing coordinates from the symmetry algebra. (English) Zbl 1471.34069

This paper is concerned with the problem of linearization of differential equations. More precisely, the authors study Lie symmetries of \(N\)-th order ordinary differential equations having maximal symmetries and also give an algorithmic procedure to find linearizing coordinates. It is important to note that the equations studied are all of order greater than two.

MSC:

34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
34C14 Symmetries, invariants of ordinary differential equations
PDFBibTeX XMLCite
Full Text: arXiv Link

References:

[1] A. Y. Al-Dweik, M. T. Mustafa, F. M. Mahomed, R. S. Alassar:Linearization of third order differential equationsu′′′=f(x, u, u′, u′′)via point transformations, Math. Meth. Appl. Sci. 41 (2018) 6017-7098.
[2] S. Ali, H. Azad, I. Biswas, W. A. de Graaf:A constructive method for decomposing real representations, J. Symbolic Computation 104 (2020) 328-342. · Zbl 1498.17032
[3] H. Azad, I. Biswas, R. Ghanam, M. T. Mustafa:On computing joint invariants of vector fields, J. Geom. Physics 97 (2015) 69-76. · Zbl 1376.37050
[4] H. Azad, I. Biswas, F. M. Mahomed:Equality of the algebraic and geometric ranks of Cartan subalgebras and applications to linearization of a system of ordinary differential equations, Int. J. Math. 28 (2017) 1750080. · Zbl 1382.34016
[5] G. Bluman, S. Kumei:Symmetries and Differential Equations, Springer, New York (1989). · Zbl 0698.35001
[6] S. S. Chern:The geometry of the differential equationy′′′=F(x, y, y, y′′), Sci. Rep. Nat. Tsing Hua University 4 (1940) 97-111. · JFM 66.0879.02
[7] O. Gat:Symmetry algebras of third-order ordinary differential equations, J. Math. Physics 33 (1992) 2966. · Zbl 0777.34011
[8] G. Grebot:The characterization of third order ordinary differential equations admitting a transitive fibre-preserving point symmetry group, J. Math. Analysis Appl. 206 (1997) 364-388. · Zbl 0869.34007
[9] C. Grissom, G. Thompson, G. Wilkens:Linearization of Second Order Ordinary Differential Equations via Cartan’s Equivalence Method, J. Diff. Equations, Chapman &Hall, Boca Raton (2008).
[10] J. Hilgert, K. H. Neeb:Structure and Geometry of Lie Groups, Springer Monographs in Mathematics, Springer, New York (2012). · Zbl 1229.22008
[11] N. H. Ibragimov:A Practical Course in Differential Equations and Mathematical Modelling, Classical and New Methods, Nonlinear Mathematical Models, Symmetry and Invariance Principles, Higher Education Press, World Scientific, Hackensack (2009).
[12] N. H. Ibragimov, F. M. Mahomed:Ordinary differential equations, CRC Handbook of Lie Group Analysis of Differential Equations 3, N. H. Ibragimov (ed.), CRC Press, Boca Raton (1996). · Zbl 0864.35003
[13] N. H. Ibragimov, S. V. Meleshko:Linearization of third-order ordinary differential equations by point and contact transformations, J. Math. Analysis Appl. 308 (2005) 266-289. · Zbl 1082.34003
[14] N. H. Ibragimov, S. V. Meleshko, S. Suksern:Linearization of fourth-order ordinary differential equations by point transformations, J. Physics A: Math. Theor. 41 (2008) 235206-19. · Zbl 1151.34029
[15] A. W. Knapp:Lie Groups Beyond an Introduction, 2nd ed., Progress in Mathematics 140, Birkhäuser, Boston (2002). · Zbl 1075.22501
[16] J. Krause, L. Michel:Classification of the symmetries of ordinary differential equations, in:Group Theoretical Methods in Physics, V. V. Dodonov, V. I. Man’ko (eds.), Lecture Notes in Physics 382, Springer, Berlin (1990) 251-262.
[17] S. Kumei, G. Bluman:When nonlinear differential equations are equivalent to linear differential equations, SIAM J. Appl. Math. 42 (1982) 1157-1173. · Zbl 0506.35003
[18] S. Lie:Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischenx,y, die eine Gruppe von Transformationen gestatten, Arch. Math. III (1883) 187. · JFM 20.0368.02
[19] S. Lie:Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen, Teubner, Leipzig (1891). · JFM 23.0351.01
[20] S. Lie:Theorie der Transformationsgruppen, vol. 3, Teubner, Leipzig (1993). · JFM 25.0626.01
[21] S. Lie:Theory of Transformation Groups I, edited by J. Merker, Springer, Berlin (2015). · Zbl 1315.22001
[22] A. G. Lopez, N. Kamran, P. J. Olver:Lie Algebras of vector fields in the real plane, Proc. London Math. Soc. 3 (1992) 339-368. · Zbl 0872.17022
[23] F. M. Mahomed, P. G. L. Leach:Symmetry Lie algebras ofnthorder ordinary differential equations, J. Math. Analysis Appl. 151 (1990) 80-107. · Zbl 0719.34018
[24] F. M. Mahomed, A. Qadir:Invariant linearization criteria for systems of cubically nonlinear second-order ordinary differential equations, J. Nonlinear Math. Physics 16 (2009) 283-298. · Zbl 1190.34045
[25] S. Neut, M. Petitot:La géométrie de l’équationy′′′=f(x, y, y′, y′′), C. R. Acad. Sci. Paris Sér I 335 (2002) 515-518. · Zbl 1016.34007
[26] P. J. Olver:Equivalence, Invariance and Symmetry, Cambridge University Press, Cambridge (1995). · Zbl 0837.58001
[27] W. R. Oudshoorn, M. Van Der Put:Lie symmetries and differential Galois groups of linear equations, Math. Comp. 71 (2001) 349-361. · Zbl 0989.34007
[28] G. J. Reid:Finding abstract Lie symmetry algebras of differential equations without integrating determining equations, Eur. J. Appl. Math. 2 (1991) 319-340. · Zbl 0768.35002
[29] F. Schwarz:Algorithmic Lie Theory for Solving Ordinary Differential Equations, Chapman&Hall, Boca Raton (2008). · Zbl 1139.34003
[30] A. Tressé:Sur les invariants différentiels des groupes continus de transformations, Acta Math. 18 (1894) 1. · JFM 25.0641.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.