×

Coupled topology optimization of structure and connections for bolted mechanical systems. (English) Zbl 07477403

Summary: This work introduces a new coupled topology optimization approach for a structural assembly. Considering several parts connected by bolts, the shape and topology of potentially each part, as well as the position and number of bolts are simultaneously optimized. The main ingredients of our optimization approach are the level-set method for structural optimization, a new notion of topological derivative of an idealized model of bolt in order to decide where it is advantageous to add a new bolt, coupled with a parametric gradient-based algorithm for its position optimization. Both idealized bolt and its topological derivative handle prestressed state complexity. Several 3d numerical test cases are performed to demonstrate the efficiency of the proposed strategy for mass minimization, considering Von Mises and fatigue constraints for the bolts and compliance constraint for the structure. In particular, a simplified but industrially representative example of an accessories bracket for car engines demonstrates significant benefits. Optimizing both the structure and its connections reduces the mass by 24% compared to classical “structure-only” optimization.

MSC:

74-XX Mechanics of deformable solids

Software:

ABAQUS/Standard; NX
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] NX Nastran User’s Guide (2014), Siemens PLM Software: Siemens PLM Software United States
[2] Allaire, G., Conception Optimale De Structures (2007), Springer-Verlag: Springer-Verlag Berlin, Mathématiques et Applications 58 · Zbl 1132.49033
[3] Allaire, G.; Jouve, F.; Toader, A. M., Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 1, 363-393 (2004) · Zbl 1136.74368
[4] Aydin, E.; Dutkiewicz, M.; Öztürk, B.; Sonmez, M., Optimization of elastic spring supports for cantilever beams, Struct. Multidiscip. Optim., 62, 55-81 (2020)
[5] Berot, M., Modélisation simplifiée d’assemblages par éléments équivalents (2009), École Nationale Supérieure des Mines de Paris, (Ph.D. thesis)
[6] Bickford, J., (An Introduction To The Design and Behavior Of Bolted Joints. An Introduction To The Design and Behavior Of Bolted Joints, Mechanical Engineering, vol. 97 (1995), Marcel Dekker: Marcel Dekker New York)
[7] Buhl, T., Simultaneous topology optimization of structure and supports, Struct. Multidiscip. Optim., 23, 336-346 (2002)
[8] Céa, J.; Garreau, S.; Guillaume, P.; Masmoudi, M., The shape and topological optimizations connection, Comput. Methods Appl. Mech. Engrg., 188, 713-726 (2000) · Zbl 0972.74057
[9] Collins, J. A.; Busby, H. R.; Staab, G. H., Mechanical Design Of Machine Elements and Machines (2009), Wiley
[10] Dapogny, C.; Dobrzynski, C.; Frey, P., Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems, J. Comput. Phys., 262, 358-378 (2014) · Zbl 1349.76598
[11] Desai, J., Topology optimization in contact, plasticity and fracture mechanics using a level-set method (2021), Université de Paris, (Ph.D. thesis)
[12] Eck, C.; Jarusek, J.; Krbec, M., (Unilateral Contact Problems: Variational Methods and Existence Theorems. Unilateral Contact Problems: Variational Methods and Existence Theorems, Chapman & Hall/CRC Pure and Applied Mathematics (2005), CRC Press), URL https://books.google.fr/books?id=meIjVxFrqZ0C · Zbl 1079.74003
[13] Eschenauer, H.; Kobelev, V.; Schumacher, A., Bubble method for topology and shape optimization of structures, Struct. Optim., 8, 42-51 (1994)
[14] Grzejda, R., Modelling bolted joints using a simplified model, J. Mech. Transp. Eng., 69, 1, 23-37 (2017)
[15] Guillot, J., Assemblages par éléments filetés (1989), Techniques de l’Ingénieur
[16] Guillot, J., Modélisation et calcul des assemblages visées. Généralités (1989), Techniques de l’Ingénieur
[17] Hadamard, J., Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées (1907), Bull. Soc. Math.: Bull. Soc. Math. France · JFM 39.1022.01
[18] Hou, J.; Zhu, J.; Wang, J.; Zhang, W., Topology optimization of multi-fasteners jointed structure considering fatigue constraints, Int. J. Simul. Multidisci. Des. Optim., 9, A4 (2018)
[19] Jiang, T.; Chirehdast, M., A systems approach to structural topology optimization: Designing optimal connections, ASME. J. Mech.- Des., 119, 1, 40-47 (1997)
[20] Kerguignas, M.; Caignaert, G., Résistance Des Matériaux (1977), DUNOD Université, 4ème ed: DUNOD Université, 4ème ed Paris
[21] Kinderlehrer, D.; Stampacchia, G., (An Introduction To Variational Inequalities and Their Applications. An Introduction To Variational Inequalities and Their Applications, Classics Appl. Math., vol. 31 (1980), SIAM) · Zbl 0457.35001
[22] Li, Q.; Steven, G. P.; Xie, Y. M., Evolutionary structural optimization for connection topology design of multi-component systems, Eng. Comput., 18, 3/4, 460-479 (2001) · Zbl 1153.74364
[23] Luenberger, D. G.; Ye, Y., Linear and Nonlinear Programming (2008), Springer, New York · Zbl 1207.90003
[24] Maury, A.; Allaire, G.; Jouve, F., Shape optimisation with the level set method for contact problems in linearised elasticity, SMAI J. Comput. Math., 3, 249-292 (2017) · Zbl 1416.74079
[25] Mignot, F., Contrôle dans les inéquations variationelles elliptiques, J. Funct. Anal., 22, 2, 130-185 (1976) · Zbl 0364.49003
[26] Montgomery, J., 2002. Methods for Modeling Bolts in the Bolted Joint, in: ANSYS World Users Conference.
[27] Nocedal, J.; Wright, S. J., Numerical Optimization (2006), Springer, New York · Zbl 1104.65059
[28] Novotny, A. A.; Sokołowski, J., Topological Derivatives In Shape Optimization (2013), Springer, Heidelberg · Zbl 1276.35002
[29] Oinonen, A.; Tanskanen, P.; Björk, T.; Marquis, G., Pattern optimization of eccentrically loaded multi-fastener joints, Struct. Multidisc. Optim., 40, 597-609 (2010)
[30] Osher, S. J.; Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces (2006), Springer Science & Business Media, Applied Mathematical Sciences
[31] Osher, S. J.; Sethian, J. A., Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12-49 (1988) · Zbl 0659.65132
[32] Pironneau, O., Optimal Shape Design For Elliptic Systems (1984), Springer-Verlag: Springer-Verlag New-York · Zbl 0496.93029
[33] Rakotondrainibe, L., Optimisation topologique des liaisons dans les systèmes mécaniques (2020), Institut Polytechnique de Paris, https://tel.archives-ouvertes.fr/tel-03106332
[34] Rakotondrainibe, L.; Allaire, G.; Orval, P., Topology optimization of connections in mechanical systems, Struct. Multidiscip. Optim., 61, 2253-2269 (2020)
[35] Rakotondrainibe, L.; Allaire, G.; Orval, P., Topological sensitivity analysis with respect to a small idealized bolt, Engineering Computations (2021), https://doi.org/10.1108/EC-03-2021-0131
[36] Ryberg, A.-B.; L., Nilsson, Spot weld reduction methods for automotive structures, Struct. Multidiscip. Optim., 53, 923-934 (2016)
[37] Sethian, J. A., Level Set Methods and Fast Marching Methods: Evolving Interfaces In Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (1999), Cambridge University Press · Zbl 0973.76003
[38] Sines, G., Failure of materials under combines repeated stresses with superimposed static stresses. Technical report (1955), NACA, Tech. Note, 3495
[39] Smith, M., ABAQUS/Standard User’s Manual, Version 6.9 (2009), Dassault Systèmes Simulia Corp: Dassault Systèmes Simulia Corp United States
[40] Sokołowski, J.; Żochowski, A., On the topological derivative in shape optimization, SIAM J. Control Optim., 37, 1251-1272 (1999) · Zbl 0940.49026
[41] Sokołowski, J.; Żochowski, A., Topological derivatives of shape functionals for elasticity systems, Mech. Struct. Mach., 29, 333-351 (2001)
[42] Sokołowski, J.; Zolesio, J. P., Introduction To Shape Optimization (1992), Springer-Verlag: Springer-Verlag Berlin · Zbl 0765.76070
[43] Son, J. H.; Kwak, B. M., Optimization of boundary conditions for maximum fundamental frequency of vibrating structures, AIAA J., 31, 12, 2351-2357 (1993) · Zbl 0794.73051
[44] Wang, D., Structural optimization with evolutionary shift method (2003), Department of Aircraft Manufacturing Engineering, Northwestern Polytechnical University, (Ph.D. thesis)
[45] Wang, B. P.; Chen, J. L., Application of genetic algorithm for the support location optimization of beams, Comput. Struct, 58, 797-800 (1996) · Zbl 0900.73507
[46] Wang, D.; Jiang, J. S.; Zhang, W. H., Optimization of support positions to maximize the fundamental frequency of structures, Internat. J. Numer. Methods Engrg., 61, 1584-1602 (2004) · Zbl 1075.74609
[47] Wang, M. Y.; Wang, X.; Guo, D., A level set method for structural topology optimization, Comput. Methods Appl. Mech. Engrg., 192, 227-246 (2003) · Zbl 1083.74573
[48] Xia, Q.; Wang, M. Y.; Shi, T., A level set method for shape and topology optimization of both structure and support of continuum structures, Comput. Methods Appl. Mech. Engrg., 272, 340-353 (2014) · Zbl 1296.74084
[49] Yang, S.; Yan, L.; Qi, C., An adaptive multi-step varying-domain topology optimization method for spot weld design of automotive structures, Struct. Multidiscip. Optim., 59, 291-310 (2019)
[50] Zahavi, E., The Finite Element Method In Machine Design (1992), Prentice-Hall · Zbl 0800.73387
[51] Zhu, J. H.; Gao, H. H.; W. H., Zhang; Zhou, Y., A multi-point constraints based integrated layout and topology optimization design of multi-component systems, Struct. Multidiscip. Optim., 51, 2, 397-407 (2015)
[52] Zhu, J. H.; Guo, W. J.; Zhang, W. H.; Liu, T., Integrated layout and topology optimization design of multi-frame and multi-component fuselage structure systems, Struct. Multidiscip. Optim., 56, 1, 21-45 (2017)
[53] Zhu, J. H.; Zhang, W. H., Maximization of structure natural frequency with optimal support layout, Struct. Multidiscip. Optim., 31, 462-469 (2006)
[54] Zhu, J. H.; Zhang, W. H., Integrated layout design of supports and structures, Comput. Methods Appl. Mech. Engrg., 199, 9-12, 557-569 (2010) · Zbl 1227.74057
[55] Żylinski, B.; Buczkowski, R., Analysis of bolt joint using the finite element method, Arch. Mech. Eng., 57, 3, 275-292 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.