×

Increasing the critical time step: micro-inertia, inertia penalties and mass scaling. (English) Zbl 1398.74297

Summary: Explicit time integration is a popular method to simulate the dynamical behaviour of a system. Unfortunately, explicit time integration is only conditionally stable: the time step must be chosen not larger than the so-called “critical time step”, otherwise the numerical solution may become unstable. To reduce the CPU time needed to carry out simulations, it is desirable to explore methods that increase the critical time step, which is the main objective of our paper. To do this, first we discuss and compare three approaches to increase the critical time step: micro-inertia formulations from continuum mechanics, inertia penalties which are used in computational mechanics, and mass scaling techniques that are mainly used in structural dynamics. As it turns out, the similarities between these methods are significant, and in fact they are identical in 1D if linear finite elements are used. This facilitates interpretation of the additional parameters in the various methods. Next, we derive, for a few simple finite element types, closed-form expressions for the critical time step with micro-structural magnification factors. Finally, we discuss computational overheads and some implementational details.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16: 52–78 · Zbl 0119.40302 · doi:10.1007/BF00248490
[2] Vardoulakis I, Aifantis EC (1994) On the role of microstructure in the behavior of soils: effects of higher order gradients and internal inertia. Mech Mater 18: 151–158 · doi:10.1016/0167-6636(94)00002-6
[3] Rubin MB, Rosenau P, Gottlieb O (1995) Continuum model of dispersion caused by an inherent material characteristic length. J Appl Phys 77: 4054–4063 · Zbl 1244.74070 · doi:10.1063/1.359488
[4] Chen W, Fish J (2001) A dispersive model for wave propagation in periodic heterogeneous media based on homogenization with multiple spatial and temporal scales. ASME J Appl Mech 68: 153–161 · Zbl 1110.74377 · doi:10.1115/1.1357165
[5] Wang Z-P, Sun CT (2002) Modeling micro-inertia in heterogeneous materials under dynamic loading. Wave Motion 36: 473–485 · Zbl 1163.74461 · doi:10.1016/S0165-2125(02)00037-9
[6] Metrikine AV, Askes H (2002) One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part 1: Generic formulation. Eur J Mech A/Solids 21: 555–572 · Zbl 1006.74016 · doi:10.1016/S0997-7538(02)01218-4
[7] Askes H, Metrikine AV (2002) One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part 2: static and dynamic response. Eur J Mech A/Solids 21: 573–588 · Zbl 1006.74017 · doi:10.1016/S0997-7538(02)01217-2
[8] Andrianov IV, Awrejcewicz J, Barantsev RG (2003) Asymptotic approaches in mechanics: new parameters and procedures. Appl Mech Rev 56: 87–110 · doi:10.1115/1.1521436
[9] Andrianov IV, Awrejcewicz J (2005) Continuous models for 1D discrete media valid for higher frequency domain. Phys Lett A 345: 55–62 · Zbl 1345.70041 · doi:10.1016/j.physleta.2005.06.117
[10] Engelbrecht J, Berezovski A, Pastrone F, Braun M (2005) Waves in microstructured materials and dispersion. Philos Mag 85: 4127–4141 · Zbl 1345.74058 · doi:10.1080/14786430500362769
[11] Gitman IM, Askes H, Aifantis EC (2005) The representative volume size in static and dynamic micro-macro transitions. Int J Fract 135: L3–L9 · Zbl 1196.74167 · doi:10.1007/s10704-005-4389-6
[12] Metrikine AV, Askes H (2006) An isotropic dynamically consistent gradient elasticity model derived from a 2D lattice. Philos Mag 86: 3259–3286 · doi:10.1080/14786430500197827
[13] Askes H, Wang B, Bennett T (2008) Element size and time step selection procedures for the numerical analysis of elasticity with higher-order inertia. J Sound Vib 314: 650–656 · doi:10.1016/j.jsv.2007.12.034
[14] Hetherington J, Askes H (2009) Penalty methods for time domain computational dynamics based on positive and negative inertia. Comput Struct 87: 1474–1482 · doi:10.1016/j.compstruc.2009.05.011
[15] Askes H, Caramés-Saddler M, Rodríguez-Ferran A (2010) Bipenalty method for time domain computational dynamics. Proc R Soc A 466: 1389– · Zbl 1279.90157 · doi:10.1098/rspa.2009.0350
[16] Kim J, Kang S-J, Kang B-S (2003) A comparative study of implicit and explicit FEM for the wrinkling prediction in the hydroforming process. Int J Adv Manuf Technol 22: 547–552 · doi:10.1007/s00170-003-1540-2
[17] van den Boogaard AH, Huétink J (2006) Simulation of aluminium sheet forming at elevated temperatures. Comput Methods Appl Mech Eng 195: 6691–6709 · Zbl 1120.74839 · doi:10.1016/j.cma.2005.05.054
[18] Wang ZW, Zeng SQ, Yang XH, Cheng C (2007) The key technology and realization of virtual ring rolling. J Mater Process Technol 182: 374–381 · doi:10.1016/j.jmatprotec.2006.08.020
[19] Nakamachi E, Huo T (1996) Dynamic-explicit elastic plastic finite-element simulation of hemispherical punch-drawing of sheet metal. Eng Comput 13: 327–338 · Zbl 0983.74550 · doi:10.1108/02644409610114594
[20] Chung WJ, Cho JW, Belytschko T (1998) On the dynamic effects of explicit FEM in sheet metal forming analysis. Eng Comput 15: 750–776 · Zbl 0956.74053 · doi:10.1108/02644409810231880
[21] Olovsson L, Unosson M, Simonsson K (2004) Selective mass scaling for thin walled structures modeled with tri-linear solid elements. Comput Mech 34: 134–136 · Zbl 1138.74398 · doi:10.1007/s00466-004-0560-6
[22] Macek RW, Aubert BH (1995) A mass penalty technique to control the critical time increment in explicit dynamic finite-element analysis. Earthq Eng Struct Dyn 24: 1315–1331 · doi:10.1002/eqe.4290241003
[23] Olovsson L, Simonsson K, Unosson M (2005) Selective mass scaling for explicit finite element analyses. Int J Numer Methods Eng 63: 1436–1445 · Zbl 1086.74522 · doi:10.1002/nme.1293
[24] Plecháč P, Rousset M (2010) Implicit mass-matrix penalization of Hamiltonian dynamics with application to exact sampling of stiff systems. Multiscale Model Simul (SIAM) 8: 498–539 · Zbl 1206.65253 · doi:10.1137/08072348X
[25] Milton GW, Willis JR (2007) On modifications of Newton’s second law and linear continuum elastodynamics. Proc R Soc A 463: 855–880 · Zbl 1347.74080 · doi:10.1098/rspa.2006.1795
[26] Andrianov IV, Awrejcewicz J (2008) Continuous models for 2D discrete media valid for higher-frequency domain. Comput Struct 86: 140–144 · doi:10.1016/j.compstruc.2007.05.013
[27] Pichugin AV, Askes H, Tyas A (2008) Asymptotic equivalence of homogenisation procedures and fine-tuning of continuum theories. J Sound Vib 313: 858–874 · doi:10.1016/j.jsv.2007.12.005
[28] Goldenveizer AL, Kaplunov JD, Nolde EV (1993) On Timoshenko-Reissner type theories of plates and shells. Int J Solids Struct 30: 675–694 · Zbl 0767.73036 · doi:10.1016/0020-7683(93)90029-7
[29] Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54: 4703–4710 · doi:10.1063/1.332803
[30] Fish J, Chen W, Nagai G (2002) Non-local dispersive model for wave propagation in heterogeneous media: multi-dimensional case. Int J Numer Meth Eng 54: 347–363 · Zbl 1034.74030 · doi:10.1002/nme.424
[31] Olovsson L, Simonsson K (2006) Iterative solution technique in selective mass scaling. Commun Numer Methods Eng 22: 77–82 · Zbl 1086.74042 · doi:10.1002/cnm.806
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.