Asok, Aravind; Hoyois, Marc; Wendt, Matthias Affine representability results in \(\mathbb A^1\)-homotopy theory. III: Finite fields and complements. (English) Zbl 07262981 Algebr. Geom. 7, No. 5, 634-644 (2020). MSC: 14F42 14L10 55R15 20G15 PDF BibTeX XML Cite \textit{A. Asok} et al., Algebr. Geom. 7, No. 5, 634--644 (2020; Zbl 07262981) Full Text: DOI
Asok, Aravind; Hoyois, Marc; Wendt, Matthias Generically split octonion algebras and \(\mathbb{A}^1\)-homotopy theory. (English) Zbl 1430.14051 Algebra Number Theory 13, No. 3, 695-747 (2019). Reviewer: Pavel Sechin (Heidelberg) MSC: 14F42 14L30 20G41 57T20 PDF BibTeX XML Cite \textit{A. Asok} et al., Algebra Number Theory 13, No. 3, 695--747 (2019; Zbl 1430.14051) Full Text: DOI
Asok, Aravind; Hoyois, Marc; Wendt, Matthias Affine representability results in \(\mathbb A^1\)-homotopy theory. II: Principal bundles and homogeneous spaces. (English) Zbl 1400.14061 Geom. Topol. 22, No. 2, 1181-1225 (2018). Reviewer: Fangzhou Jin (Essen) MSC: 14F42 55R15 14L10 20G15 PDF BibTeX XML Cite \textit{A. Asok} et al., Geom. Topol. 22, No. 2, 1181--1225 (2018; Zbl 1400.14061) Full Text: DOI
Asok, Aravind; Hoyois, Marc; Wendt, Matthias Affine representability results in \(\mathbb{A}^1\)-homotopy theory. I: Vector bundles. (English) Zbl 1401.14118 Duke Math. J. 166, No. 10, 1923-1953 (2017). Reviewer: Fangzhou Jin (Essen) MSC: 14F42 55R15 PDF BibTeX XML Cite \textit{A. Asok} et al., Duke Math. J. 166, No. 10, 1923--1953 (2017; Zbl 1401.14118) Full Text: DOI Euclid arXiv