zbMATH — the first resource for mathematics

Motivic spheres and the image of the Suslin-Hurewicz map. (English) Zbl 1444.19004
The authors use computations in \(\mathbb{A}^1\)-homotopy theory to etablish a new case of a delicate conjecture of Suslin in \(K\)-theory. In [Lect. Notes Math. 1046, 357–375 (1984; Zbl 0528.18007)], A. A. Suslin constructed, for infinite fields \(F\), natural maps \(K_n^Q(F)\to K_n^M(F)\) from the Quillen \(K\)-theory to the Milnor \(K\)-theory of \(F\). He showed that image contains \((n-1)!K_n^M(F)\) and conjectured that this was precisely the image for all \(n\) and all infinite fields \(F\). He showed that when \(n=3\) this conjecture is equivalent to the case \(n=3\) of Milnor’s conjecture on quadratic forms. In the article under review, the authors prove the case \(n=5\) of Suslin’s conjecture for local algebras \(A\) that are essentially smooth over an infinite field \(k\) of characteristic not equal to \(2\) or \(3\).
The main idea is to compare Suslin’s homomorphism above (this is the Suslin-Hurewicz map of the title) to a morphism: \(\psi_n:\mathbf{K}_n^Q\to \mathbf{K}_n^M\) of sheaves occurring in a previous work of the first two authors [J. Topol. 7, No. 3, 894–926 (2014; Zbl 1326.14098)]. Letting \(\mathbf{S}_n\) denote the cokernel of \(\psi_n\), the authors build on the seminal work of F. Morel [\(\mathbb A^1\)-algebraic topology over a field. Berlin: Springer (2012; Zbl 1263.14003)] as well as recent work by M. Schlichting [Adv. Math. 320, 1–81 (2017; Zbl 1387.19002)] to prove that for rings \(A\) as above (but for fields \(k\) of any characteristic) Suslin’s conjecture holds in degree \(n\) if and only if the surjection \(\mathbf{K}_n^M\to \mathbf{S}_n\) induces an isomorphism \(\left(\mathbf{K}^M_n/(n-1)!\right)(A)\to \mathbf{S}_n(A)\). In the last part of the article, the authors use intricate and interesting calculations in the \(\mathbb{A}^1\)-homotopy theory of motivic spheres to arrive at their result in the case \(n=5\).
19D50 Computations of higher \(K\)-theory of rings
Full Text: DOI arXiv
[1] Asok, A.; Fasel, J., Algebraic vector bundles on spheres, J. Topol., 7, 3, 894-926 (2014) · Zbl 1326.14098
[2] Asok, A.; Fasel, J., A cohomological classification of vector bundles on smooth affine threefolds, Duke Math. J., 163, 14, 2561-2601 (2014) · Zbl 1314.14044
[3] Asok, A.; Fasel, J., Splitting vector bundles outside the stable range and \(\mathbb{A}^1\)-homotopy sheaves of punctured affine spaces, J. Am. Math. Soc., 28, 4, 1031-1062 (2015) · Zbl 1329.14045
[4] Asok, A.; Fasel, J., An explicit \(KO\)-degree map and applications, J. Topol., 10, 1, 268-300 (2017) · Zbl 1400.14060
[5] Asok, A.; Hoyois, M.; Wendt, M., Affine representability results in \(\mathbb{A}^1\)-homotopy theory, I: vector bundles, Duke Math. J., 166, 10, 1923-1953 (2017) · Zbl 1401.14118
[6] Asok, A.; Hoyois, M.; Wendt, M., Affine representability results in \(\mathbb{A}^1\)-homotopy theory, II: principal bundles and homogeneous spaces, Geom. Topol., 22, 2, 1181-1225 (2018) · Zbl 1400.14061
[7] Arason, Jk, Cohomologische invarianten quadratischer Formen, J. Algebra, 36, 3, 448-491 (1975) · Zbl 0314.12104
[8] Asok, A.; Wickelgren, K.; Williams, Tb, The simplicial suspension sequence in \(\mathbb{A}^1\)-homotopy, Geom. Topol., 21, 4, 2093-2160 (2017) · Zbl 1365.14027
[9] Bousfield, Ak; Kan, Dm, Homotopy Limits, Completions and Localizations (1972), Berlin: Springer, Berlin
[10] Dugger, D.; Isaksen, Dc, Topological hypercovers and \(\mathbb{A}^1\)-realizations, Math. Z., 246, 4, 667-689 (2004) · Zbl 1055.55016
[11] Gersten, Sm, Higher \(K\)-Theory of Rings, 3-42 (1973), Berlin: Springer, Berlin · Zbl 0285.18010
[12] Guin, D., Homologie du groupe linéaire et \(K\)-théorie de Milnor des anneaux, J. Algebra, 123, 1, 27-59 (1989) · Zbl 0669.20037
[13] Hutchinson, K.; Wendt, M., On the third homology of \(SL_2\) and weak homotopy invariance, Trans. Am. Math. Soc., 367, 10, 7481-7513 (2015) · Zbl 1330.20069
[14] Isaksen, Dc, Etale realization on the \(\mathbb{A}^1\)-homotopy theory of schemes, Adv. Math., 184, 1, 37-63 (2004) · Zbl 1073.14028
[15] Jacob, B.; Rost, M., Degree four cohomological invariants for quadratic forms, Invent. Math., 96, 3, 551-570 (1989) · Zbl 0685.10015
[16] Kerz, M., The Gersten conjecture for Milnor \(K\)-theory, Invent. Math., 175, 1, 1-33 (2009) · Zbl 1188.19002
[17] Knebusch, M.; Rosenberg, A.; Ware, R., Structure of witt rings and quotients of abelian group rings, Am. J. Math., 94, 1, 119-155 (1972) · Zbl 0248.13030
[18] Lam, Ty, Introduction to Quadratic Forms Over Fields (2005), Providence: American Mathematical Society, Providence
[19] Morel, F.: Théorie homotopique des schémas. Astérisque, (256):vi+119, (1999) · Zbl 0933.55021
[20] Morel, F., An Introduction to \(\mathbb{A}^1\)-Homotopy Theory Contemporary Developments in Algebraic \(K\)-Theory, 357-441 (2004), Trieste: Abdus Salam International Centre for Theoretical Physics, Trieste
[21] Morel, F., Milnor’s conjecture on quadratic forms and mod 2 motivic complexes, Rend. Sem. Mat. Univ. Padova, 114, 63-101, 2005 (2006)
[22] Morel, F.; Jerison, D.; Mazur, B.; Mrowka, T.; Schmid, W.; Stanley, R.; Yau, St, On the Friedlander-Milnor conjecture for groups of small rank, Current Developments in Mathematics, 2010, 45-93 (2011), Somerville: International Press, Somerville · Zbl 1257.55007
[23] Morel, F., \({\mathbb{A}}^1\)-algebraic topology over a field (2012), Heidelberg: Springer, Heidelberg
[24] Merkurjev, As; Suslin, Aa, The group \(K_3\) for a field, Izv. Akad. Nauk SSSR Ser. Mat., 54, 3, 522-545 (1990)
[25] Morel, F.; Voevodsky, V., \({\mathbf{A}}^1\)-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math., 90, 45-143, 1999 (2001)
[26] Nesterenko, Yup; Suslin, Aa, Homology of the general linear group over a local ring, and Milnor’s \(K\)-theory, Izv. Akad. Nauk SSSR Ser. Mat., 53, 1, 121-146 (1989) · Zbl 0668.18011
[27] Orlov, D.; Vishik, A.; Voevodsky, V., An exact sequence for \(K^M_\ast /2\) with applications to quadratic forms, Ann. Math. (2), 165, 1, 1-13 (2007) · Zbl 1124.14017
[28] Rector, Dl, \(K\)-theory of a space with coefficients in a (discrete) ring, Bull. Am. Math. Soc., 77, 571-575 (1971) · Zbl 0234.55008
[29] Röndigs, O.; Østvær, P-A, Slices of hermitian \(K\)-theory and Milnor’s conjecture on quadratic forms, Geom. Topol., 20, 2, 1157-1212 (2016) · Zbl 1416.19001
[30] Rost, M.: Hilbert \(90\) for \(K_3\) for Degree-Two Extensions. (Preprint), (1986)
[31] Röndigs, O.; Spitzweck, M.; Østvær, P-A, The first stable homotopy groups of motivic spheres, Ann. Math. (2), 189, 1, 1-74 (2019) · Zbl 1406.14018
[32] Schlichting, M., Euler class groups and the homology of elementary and special linear groups, Adv. Math., 320, 1-81 (2017) · Zbl 1387.19002
[33] Schlichting, M.; Tripathi, Gs, Geometric models for higher Grothendieck-Witt groups in \(\mathbb{A}^1\)-homotopy theory, Math. Ann., 362, 3-4, 1143-1167 (2015) · Zbl 1331.14028
[34] Suslin, A. A.: Homology of \({\rm GL}_n\), characteristic classes and Milnor \(K\)-theory. In Algebraic \(K\)-Theory, Number Theory, Geometry and Analysis (Bielefeld, 1982), volume 1046 of Lecture Notes in Mathematics, pp. 357-375. Springer, Berlin, (1984)
[35] Weibel, Ca, The \(K\)-Book, volume 145 of Graduate Studies in Mathematics (2013), Providence: American Mathematical Society, Providence
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.