zbMATH — the first resource for mathematics

Splitting vector bundles outside the stable range and \(\mathbb A^1\) – homotopy sheaves of punctured affine spaces. (English) Zbl 1329.14045
The authors establish the following theorem: if \(k\) is an algebraically closed field of characteristic different from \(2\), \(X\) a smooth affine \(4\)-fold over \(k\) and \(E\) a rank three vector bundle over \(X\), then \(E\) splits off a trivial summand if and only if the third Chern class of \(E\) (in Chow theory) vanishes. This establishes a low-dimensional case of a conjecture of Murthy.
The proof is a crafty application of \(\mathbb{A}^1\)-algebraic topology, as initiated by Morel. In analogy with classical topology, there is a “space” (simplicial sheaf) \(\mathrm{BGL}_n\) such that for a smooth affine variety \(X\), the set of weak \(\mathbb{A}^1\)-homotopy classes \([X, \mathrm{BGL}_n]_{\mathbb{A}^1}\) is in natural bijection with the set of isomorphism classes of rank \(n\) vector bundles over \(X\). There is a map \(\mathrm{BGL}_{n-1} \to \mathrm{BGL}_n\) corresponding to adding a trivial bundle, and so the question of splitting off a trivial bundle is converted into a lifting problem. This can be tackled by obstruction theory. Again in analogy with classical topology, there is an appropriate type of fibre sequence \(\mathbb{A}^n \setminus 0 \to \mathrm{BGL}_{n-1} \to \mathrm{BGL}_n\). Thus the splitting problem is intimately related to the unstable homotopy sheaves of \(\mathbb{A}^n \setminus 0 \simeq S^{n-1} \wedge \mathbb{G}_m^{\wedge n}\). As established by F. Morel [\(\mathbb A^1\)-algebraic topology over a field. Lecture Notes in Mathematics 2052. Berlin: Springer (2012; Zbl 1263.14003)], one has \(\underline{\pi}_d^{\mathbb{A}^1} (\mathbb{A}^n \setminus 0) = 0\) for \(d < n-1\) and \(\underline{\pi}_{n-1}^{\mathbb{A}^1} (\mathbb{A}^n \setminus 0) = \underline{K}_n^{MW}\). This is where the primary (Euler class) obstruction lives. The authors explicitly compute \(\underline{\pi}_{3}^{\mathbb{A}^1} (\mathbb{A}^3 \setminus 0)\) (and a host of other unstable homotopy sheaves), which allows them to completely control the question of rank three vector bundles over affine four-folds (since the higher homotopy sheaves are irrelevant for dimension reasons). This way their theorem is reduced to a (not entirely trivial) computation.

14F42 Motivic cohomology; motivic homotopy theory
55S35 Obstruction theory in algebraic topology
13C10 Projective and free modules and ideals in commutative rings
19A13 Stability for projective modules
19D45 Higher symbols, Milnor \(K\)-theory
Full Text: DOI arXiv
[1] Asok, Aravind; Fasel, Jean, Comparing Euler classes, (2013) · Zbl 1349.14078
[2] Asok, Aravind; Fasel, Jean, Motivic secondary characteristic classes and the Euler class, (2013) · Zbl 1349.14078
[3] Asok, Aravind; Fasel, Jean, Toward a meta-stable range in \({\mathbb A}^1\)-homotopy theory of punctured affine spaces, Oberwolfach Rep., 10, 2, 1892\textendash 1895 pp., (2013)
[4] Asok, Aravind; Fasel, Jean, Algebraic vector bundles on spheres, J. Topol., (2014) · Zbl 1326.14098
[5] Asok, Aravind; Fasel, Jean, A cohomological classification of vector bundles on smooth affine threefolds, Duke Math. J., (2014) · Zbl 1314.14044
[6] Asok, Aravind; Fasel, Jean, An explicit \(KO\)-degree map and applications, (2014) · Zbl 1400.14060
[7] Asok, Aravind; Fasel, Jean, The simplicial suspension sequence, (2014) · Zbl 1349.14078
[8] Asok, Aravind, Splitting vector bundles and \(\mathbb {A}^1\)-fundamental groups of higher-dimensional varieties, J. Topol., 6, 2, 311\textendash 348 pp., (2013) · Zbl 1300.14024
[9] Bhatwadekar, Shrikant M., A cancellation theorem for projective modules over affine algebras over \(C_1\)-fields, J. Pure Appl. Algebra, 183, 1-3, 17\textendash 26 pp., (2003) · Zbl 1049.13004
[10] Bott, Raoul, The stable homotopy of the classical groups, Ann. of Math. (2), 70, 313\textendash 337 pp., (1959) · Zbl 0129.15601
[11] Brosnan, Patrick, Steenrod operations in Chow theory, Trans. Amer. Math. Soc., 355, 5, 1869\textendash 1903 (electronic) pp., (2003) · Zbl 1045.55005
[12] Balmer, Paul; Walter, Charles, A Gersten-Witt spectral sequence for regular schemes, Ann. Sci. \'Ec. Norm. Sup\'er. (4), 35, 1, 127\textendash 152 pp., (2002) · Zbl 1012.19003
[13] Dundas, Bj\o rn Ian; R\"ondigs, Oliver; \O stv\ae r, Paul Arne, Motivic functors, Doc. Math., 8, 489\textendash 525 (electronic) pp., (2003) · Zbl 1042.55006
[14] Fasel, Jean, Groupes de Chow-Witt, M\'em. Soc. Math. Fr. (N.S.), 113, viii+197 pp., (2008) · Zbl 1190.14001
[15] Fasel, Jean; Rao, Ravi A.; Swan, Richard G., On stably free modules over affine algebras, Publ. Math. Inst. Hautes \'Etudes Sci., 116, 223\textendash 243 pp., (2012) · Zbl 1256.13008
[16] Fasel, Jean; Srinivas, Vasudevan, A vanishing theorem for oriented intersection multiplicities, Math. Res. Lett., 15, 3, 447\textendash 458 pp., (2008) · Zbl 1204.13016
[17] Fasel, J.; Srinivas, V., Chow-Witt groups and Grothendieck-Witt groups of regular schemes, Adv. Math., 221, 1, 302\textendash 329 pp., (2009) · Zbl 1167.13006
[18] Fulton, William, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] 2, xiv+470 pp., (1998), Springer-Verlag, Berlin · Zbl 0885.14002
[19] Goerss, Paul G.; Jardine, John F., Simplicial homotopy theory, Progress in Mathematics 174, xvi+510 pp., (1999), Birkh\"auser Verlag, Basel · Zbl 0949.55001
[20] Harris, Bruno, Some calculations of homotopy groups of symmetric spaces, Trans. Amer. Math. Soc., 106, 174\textendash 184 pp., (1963) · Zbl 0117.16501
[21] Hornbostel, Jens, Constructions and d\'evissage in Hermitian \(K\)-theory, \(K\)-Theory, 26, 2, 139\textendash 170 pp., (2002) · Zbl 1024.19003
[22] Hornbostel, Jens, \(A^1\)-representability of Hermitian \(K\)-theory and Witt groups, Topology, 44, 3, 661\textendash 687 pp., (2005) · Zbl 1078.19004
[23] Hu, Sze-tsen, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, xiii+347 pp., (1959), Academic Press, New York\textendash London · Zbl 0088.38803
[24] Karoubi, Max, P\'eriodicit\'e de la \(K\)-th\'eorie hermitienne. Algebraic \(K\)-theory, III: Hermitian \(K\)-theory and geometric applications (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), 301\textendash 411. Lecture Notes in Math., Vol. 343 pp., (1973), Springer, Berlin
[25] Karoubi, Max, Le th\'eor\`eme fondamental de la \(K\)-th\'eorie hermitienne, Ann. of Math. (2), 112, 2, 259\textendash 282 pp., (1980) · Zbl 0483.18008
[26] Kervaire, Michel A., Some nonstable homotopy groups of Lie groups, Illinois J. Math., 4, 161\textendash 169 pp., (1960) · Zbl 0105.35302
[27] Kumar, N. Mohan; Murthy, M. Pavaman, Algebraic cycles and vector bundles over affine three-folds, Ann. of Math. (2), 116, 3, 579\textendash 591 pp., (1982) · Zbl 0519.14009
[28] Mahowald, Mark, The metastable homotopy of \(S^{n}\), Memoirs of the American Mathematical Society, No. 72, 81 pp., (1967), American Mathematical Society, Providence, RI · Zbl 0166.19101
[29] Mumford, David; Fogarty, John; Kirwan, Frances, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)] 34, xiv+292 pp., (1994), Springer-Verlag, Berlin · Zbl 0797.14004
[30] Morel, Fabien, An introduction to \(\mathbb {A}^1\)-homotopy theory. Contemporary developments in algebraic \(K\)-theory, ICTP Lect. Notes, XV, 357\textendash 441 (electronic) pp., (2004), Abdus Salam Int. Cent. Theoret. Phys., Trieste
[31] Morel, Fabien, Milnor’s conjecture on quadratic forms and mod 2 motivic complexes, Rend. Sem. Mat. Univ. Padova, 114, 63\textendash 101 (2006) pp., (2005) · Zbl 1165.14309
[32] Morel, Fabien, The stable \({\mathbb {A}}^1\)-connectivity theorems, \(K\)-Theory, 35, 1-2, 1\textendash 68 pp., (2005) · Zbl 1117.14023
[33] Morel, Fabien, \(\mathbb {A}^1\)-algebraic topology over a field, Lecture Notes in Mathematics 2052, x+259 pp., (2012), Springer, Heidelberg · Zbl 1263.14003
[34] Milnor, John W.; Stasheff, James D., Characteristic classes, vii+331 pp., (1974), Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo · Zbl 1079.57504
[35] Murthy, M. Pavaman; Swan, Richard G., Vector bundles over affine surfaces, Invent. Math., 36, 125\textendash 165 pp., (1976) · Zbl 0362.14006
[36] Murthy, M. Pavaman, Zero cycles and projective modules, Ann. of Math. (2), 140, 2, 405\textendash 434 pp., (1994) · Zbl 0839.13007
[37] Murthy, M. Pavaman, A survey of obstruction theory for projective modules of top rank. Algebra, \(K\)-theory, groups, and education, New York, 1997, Contemp. Math. 243, 153\textendash 174 pp., (1999), Amer. Math. Soc., Providence, RI · Zbl 0962.13008
[38] Morel, Fabien; Voevodsky, Vladimir, \(\textbf{A}^1\)-homotopy theory of schemes, Inst. Hautes \'Etudes Sci. Publ. Math., 90, 45\textendash 143 (2001) pp., (1999) · Zbl 0983.14007
[39] Panin, Ivan, Homotopy invariance of the sheaf \(W_{\rm Nis}\) and of its cohomology. Quadratic forms, linear algebraic groups, and cohomology, Dev. Math. 18, 325\textendash 335 pp., (2010), Springer, New York
[40] Panin, Ivan; Walter, Charles, On the motivic commutative ring spectrum \(\mathbf {BO}\), (2010)
[41] Robinson, Christopher A., Moore-Postnikov systems for non-simple fibrations, Illinois J. Math., 16, 234\textendash 242 pp., (1972) · Zbl 0227.55019
[42] Rost, Markus, Chow groups with coefficients, Doc. Math., 1, No. 16, 319\textendash 393 (electronic) pp., (1996) · Zbl 0864.14002
[43] Schlichting, Marco, Hermitian \(K\)-theory of exact categories, J. \(K\)-Theory, 5, 1, 105\textendash 165 pp., (2010) · Zbl 1328.19009
[44] Schlichting, Marco, The Mayer-Vietoris principle for Grothendieck-Witt groups of schemes, Invent. Math., 179, 2, 349\textendash 433 pp., (2010) · Zbl 1193.19005
[45] Schlichting, Marco, Hermitian \(K\)-theory on a theorem of Giffen, \(K\)-Theory, 32, 3, 253\textendash 267 pp., (2004) · Zbl 1070.19006
[46] Serre, Jean-Pierre, Modules projectifs et espaces fibr\'es \`a fibre vectorielle. S\'eminaire P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot, 1957/58, Fasc. 2, Expos\'e 23, 18 pp., (1958), Secr\'etariat math\'ematique, Paris
[47] Schlichting, Marco; Tripathi, Girja S., Geometric models for higher Grothendieck-Witt groups in \({\mathbb A}^1\)-homotopy theory, (2013) · Zbl 1331.14028
[48] Suslin, Andrei A., A cancellation theorem for projective modules over algebras, Dokl. Akad. Nauk SSSR, 236, 4, 808\textendash 811 pp., (1977)
[49] Suslin, Andrei A., Mennicke symbols and their applications in the \(K\)-theory of fields. Algebraic \(K\)-theory, Part I, Oberwolfach, 1980, Lecture Notes in Math. 966, 334\textendash 356 pp., (1982), Springer, Berlin\textendash New York
[50] Toda, Hirosi, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, v+193 pp., (1962), Princeton University Press, Princeton, NJ · Zbl 0101.40703
[51] Totaro, Burt, The Chow ring of a classifying space. Algebraic \(K\)-theory, Seattle, WA, 1997, Proc. Sympos. Pure Math. 67, 249\textendash 281 pp., (1999), Amer. Math. Soc., Providence, RI · Zbl 0967.14005
[52] Voevodsky, Vladimir, Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes \'Etudes Sci., 98, 1\textendash 57 pp., (2003) · Zbl 1057.14027
[53] Weibel, Charles A., The \(K\)-book, Graduate Studies in Mathematics 145, xii+618 pp., (2013), American Mathematical Society, Providence, RI · Zbl 1273.19001
[54] Wendt, Matthias, Rationally trivial torsors in \(\mathbb {A}^1\)-homotopy theory, J. \(K\)-Theory, 7, 3, 541\textendash 572 pp., (2011) · Zbl 1228.19002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.