×

Effects of thermal radiation and chemical reaction on hydromagnetic fluid flow in a cylindrical collapsible tube with an obstacle. (English) Zbl 07695253

Summary: The aim of this research is to study the effects of thermal radiation and chemical reaction on hydromagnetic fluid flow in a cylindrical collapsible tube with an obstacle. The fluid flow is governed by continuity, momentum, energy, and concentration equations. Similarity transformation has been used to convert the obtained PDEs into ODEs. The collocation method has been used to numerically solve the ODEs. The method has been implemented in MATLAB using the bvp4c inbuilt function. The effects of the nondimensional parameters on velocity, temperature, and concentration have been presented graphically. Additionally, the skin-friction coefficient, the Nusselt number, and the Sherwood number have been discussed and are presented in a tabular form. The findings demonstrated that increasing the Reynolds number causes a rise in the fluid temperature and velocity. The fluid velocity decreases as the Hartmann number and the weight of the obstacle increase but increases with increasing Grashof numbers. The temperature of the fluid increases as the radiation parameter, or Eckert number, increases, but decreases as the Prandtl number increases. As the Soret number rises, so do the fluid’s temperature and concentration distribution. With an increase in the unsteadiness parameter, the fluid velocity and the concentration distribution decrease, whereas the opposite is seen in temperature. As the Schmidt number, the concentration Grashof number, and the chemical reaction parameter increase, the fluid’s concentration decreases. There is an increase in skin-friction coefficient with increasing Prandtl number, Eckert number, Soret number, thermal Grashof number, concentration Grashof number, thermal radiation parameter, Hartmann number, and unsteadiness parameter, while a decrease is observed with increasing Reynolds number. The Nusselt number increases with an increase in the Prandtl number, Eckert number, thermal radiation parameter, Hartmann number, and unsteadiness parameter. A slight decrease in the Nusselt number has been observed with increasing thermal Grashof number. The Sherwood number decreases with increasing Prandtl number, chemical reaction parameter, and thermal radiation parameter but increases with increasing Schmidt number, Eckert number, and Soret number. The research has the potential for a wide range of applications including but not limited to the medical field and other physical sciences.

MSC:

80Axx Thermodynamics and heat transfer
76Mxx Basic methods in fluid mechanics
76Wxx Magnetohydrodynamics and electrohydrodynamics

Software:

bvp4c

References:

[1] Alsemiry, R. D.; Mandal, P. K.; Mandal, P. K.; Sayed, H. M.; Amin, N., Numerical solution of blood flow and mass transport in an elastic tube with multiple stenoses, BioMed Research International, 2020 (2020) · doi:10.1155/2020/7609562
[2] Kigo Mwangi, J.; Kinyanjui, M. N.; Giterere, K.; Kiogora, P., Unsteady magnetohydrodynamic fluid flow ina collapsible tube, International Journal of Engineering Science and Innovative Technology, 4, 5, 111-118 (2015)
[3] Bég, O. A.; Bhargava, R.; Sharma, S.; Bég, T. A.; Shamshuddin, M.; Kadir, A., Numerical solutions for axisymmetric non-Newtonian stagnation enrobing flow, heat, and mass transfer with application to cylindrical pipe coating dynamics, Computational Thermal Sciences: International Journal, 12, 1, 79-97 (2020) · doi:10.1615/computthermalscien.2020026228
[4] Shaheen, S.; Shaheen, S.; Arain, M.; Nisar, K. S.; Albakri, A.; Shamshuddin, M.; Mallawi, F. O., A case study of heat transmission in a williamson fluid flow through a ciliated porous channel: a semi-numerical approach, Case Studies in Thermal Engineering, 41, 523 (2023) · doi:10.1016/j.csite.2022.102523
[5] Al-Kouz, W.; Abderrahmane, A.; Shamshuddin, M.; Younis, O.; Mohammed, S.; Beg, O. A.; Toghraie, D., Heat transfer and entropy generation analysis of water-fe3o4/cnt hybrid magnetic nanofluid flow in a trapezoidal wavy enclosure containing porous media with the galerkin finite element method, The European Physical Journal Plus, 136, 11, 1184 (2021) · doi:10.1140/epjp/s13360-021-02192-3
[6] Phoebe, M.; Kangethe, G.; Roy, K., Unsteady flow of a Newtonian fluid through a cylindrical collapsibletube, International Journal of Advances in Applied Mathematics and Mechanics, 1 (2019)
[7] Chepkonga, D.; Roy, K.; Kangethe, G., Fluid flow and heat transfer through a vertical cylindrical collapsible tube in the presence of magnetic field and an obstacle, International Journal of Advances in Applied Mathematics and Mechanics (2019) · Zbl 1468.76077
[8] Priyadharsinia, S.; Suvitha, M.; Priya, T.; Preethi, K.; Nivethitha, R., Unsteady flow of collapsible tube under transverse magneto hydrodynamic fluid, International Journal of Advanced Science and Technology, 1995-2001 (2020)
[9] Ullah, M. Z.; Abuzaid, D.; Asma, M.; Bariq, A., Couple stress hybrid nanofluid flow through a converging-diverging channel, Journal of Nanomaterials, 2021 (2021) · doi:10.1155/2021/2355258
[10] Kok, H. P.; Cressman, E. N. K.; Ceelen, W.; Brace, C. L.; Ivkov, R.; Grull, H.; ter Haar, G.; Wust, P.; Crezee, J., Heating technology for malignant tumors: a review, International Journal of Hyperthermia, 37, 1, 711-741 (2020) · doi:10.1080/02656736.2020.1779357
[11] Loganathan, K.; Alessa, N.; Jain, R.; Ali, F.; Zaib, A., Dynamics of heat and mass transfer: ree-eyring nanofluid flow over a riga plate with bioconvention and thermal radiation, Frontiers in Physics, 10, 990 (2022) · doi:10.3389/fphy.2022.974562
[12] Ferdows, M.; Shamshuddin, M.; Salawu, S. O.; Sun, S., Thermal cooling performance of convective nonnewtonian nanofluid flowing with variant power-index across moving extending surface, Scientific Reports, 12, 1, 8714-8720 (2022) · doi:10.1038/s41598-022-12333-y
[13] Alharbi, K. A. M.; Ullah, A.; Fatima, N.; Fatima, N.; Khan, R.; Sohail, M.; Khan, S.; Khan, W.; Ali, F., Impact of viscous dissipation and coriolis effects in heat and mass transfer analysis of the 3d non-Newtonian fluid flow, Case Studies in Thermal Engineering, 37 (2022) · doi:10.1016/j.csite.2022.102289
[14] Ali, F.; Loganathan, K.; Eswaramoorthi, S.; Faizan, M.; Prabu, E.; Zaib, A., Bioconvective applications of unsteady slip flow over a tangent hyperbolic nanoliquid with surface heating: improving energy system performance, International Journal of Algorithms, Computing and Mathematics, 8, 6, 276 (2022) · Zbl 1509.76117 · doi:10.1007/s40819-022-01476-1
[15] Rizk, D.; Ullah, A.; Elattar, S.; Elattar, S.; Alharbi, K. A. M.; Sohail, M.; Khan, R.; Khan, A.; Mlaiki, N., Impact of the kkl correlation model on the activation of thermal energy for the hybrid nanofluid (go+ zno+ water) flow through permeable vertically rotating surface, Energies, 15, 8, 2872 (2022) · doi:10.3390/en15082872
[16] Khan, S.; Selim, M. M.; Khan, A.; Ullah, A.; Abdeljawad, T.; Ikramullah; Ayaz, M.; Mashwani, W. K., On the analysis of the non-Newtonian fluid flow past a stretching/shrinking permeable surface with heat and mass transfer, Coatings, 11, 5, 566 (2021) · doi:10.3390/coatings11050566
[17] Ali, F.; Kumar, T. A.; Loganathan, K., Irreversibility analysis of cross fluid past a stretchable vertical sheet with mixture of carboxymethyl cellulose water based hybrid nanofluid, Alexandria Engineering Journal, 64 (2022)
[18] Ali, F.; Loganathan, K.; Eswaramoorthi, S.; Prabu, K.; Zaib, A.; Chaudhary, D. K., Heat transfer analysis on carboxymethyl cellulose water-based cross hybrid nanofluid flow with entropy generation, Journal of Nanomaterials, 2022 (2022) · doi:10.1155/2022/5252918
[19] Bafakeeh, O. T.; Raghunath, K.; Ali, F.; Khalid, M.; Tag-ElDin, E. S. M.; Oreijah, M.; Guedri, K.; Khedher, N. B.; Khan, M. I., Hall current and soret effects on unsteady mhd rotating flow of second-grade fluid through porous media under the influences of thermal radiation and chemical reactions, Catalysts, 12, 10, 1233 (2022) · doi:10.3390/catal12101233
[20] Reddy, C. S.; Ali, F.; Al-Farhany, K.; Sridhar, W., Numerical analysis of gyrotactic microorganisms in mhd radiative eyring-powell nanofluid across a static/moving wedge with soret and dufour effects, ZAMMJournal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 102, 11 (2022) · Zbl 07821846 · doi:10.1002/zamm.202100459
[21] Srinivas Reddy, C.; Ali, F.; Ahmed, M. F. A. F., Aspects on unsteady for mhd flow of cross nanofluid having gyrotactic motile microorganism due to convectively heated sheet, International Journal of Ambient Energy, 43, 1, 6028-6040 (2022) · doi:10.1080/01430750.2021.1995492
[22] Ali, F.; Reddy, C. S.; Summayya, N.; Ahmed, M. F., Effect of nonlinear thermal radiation on unsteady mhd flow of Maxwell nanoliquid over a porous vertical sheet with chemical reaction, Heat Transfer, 50, 8, 8259-8279 (2021) · doi:10.1002/htj.22276
[23] Ali, F.; Summayya, N., Numerical simulation of cattaneo-christovdouble-diffusion theory with thermal radiation on mhd eyring-powell nanofluid towards a stagnation point, International Journal of Ambient Energy, 43, 1, 4939-4949 (2022) · doi:10.1080/01430750.2021.1927840
[24] Ullah, A.; Selim, M. M.; Selim, M. M.; Abdeljawad, T.; Ayaz, M.; Mlaiki, N.; Ghafoor, A., A magnetite-water-based nanofluid three-dimensional thin film flow on an inclined rotating surface with non-linear thermal radiations and couple stress effects, Energies, 14, 17, 5531 (2021) · doi:10.3390/en14175531
[25] Shah, Z.; Kumam, P.; Ullah, A.; Khan, S. N.; Selim, M. M., Mesoscopic simulation for magnetized nanofluid flow within a permeable 3d tank, IEEE Access, 9, 135 234-135 244 (2021) · doi:10.1109/access.2021.3115599
[26] Reddy, N. N.; Rao, V. S.; Reddy, B. R., Chemical reaction impact on mhd natural convection flow through porous medium past an exponentially stretching sheet in presence of heat source/sink and viscous dissipation, Case Studies in Thermal Engineering, 25 (2021) · doi:10.1016/j.csite.2021.100879
[27] Prabhakar Reddy, B.; Makinde, O. D., Numerical study on mhd radiating and reacting unsteady slip flow past a vertical permeable plate in a porous medium, International Journal of Ambient Energy, 43, 1, 6007-6016 (2021) · doi:10.1080/01430750.2021.1999323
[28] Elelamy, A. F.; Elgazery, N. S.; Ellahi, R., Blood flow of mhd non-Newtonian nanofluid with heat transfer and slip effects: application of bacterial growth in heart valve, International Journal of Numerical Methods for Heat and Fluid Flow, 30 (2020)
[29] Ahmed, M. F.; Zaib, A.; Ali, F.; Bafakeeh, O. T.; Tag-ElDin, E. S. M.; Guedri, K.; Elattar, S.; Khan, M. I., Numerical computation for gyrotactic microorganisms in mhd radiative eyring-powell nanomaterial flow by a static/moving wedge with Darcy-forchheimer relation, Micromachines, 13, 10, 1768 (2022) · doi:10.3390/mi13101768
[30] Salawu, S. O.; Obalalu, A. M.; Shamshuddin, M., Nonlinear solar thermal radiation efficiency and energy optimization for magnetized hybrid Prandtl-eyring nanoliquid in aircraft, Arabian Journal for Science and Engineering, 48, 3, 3061-3072 (2022) · doi:10.1007/s13369-022-07080-1
[31] Odejide, S.; Aregbesola, Y.; Makinde, O., Fluid flow and heat transfer in a collapsible tube, Romanian Journal of Physics, 53, 499-506 (2008)
[32] Gnaneswara Reddy, M.; Venugopal Reddy, K.; Makinde, O., Hydromagnetic peristaltic motion of a reacting and radiating couple stress fluid in an inclined asymmetric channel filled with a porous medium, Alexandria Engineering Journal, 55, 2, 1841-1853 (2016) · doi:10.1016/j.aej.2016.04.010
[33] Kodi, R.; Mopuri, O., Unsteady mhd oscillatory casson fluid flow past an inclined vertical porous plate in the presence of chemical reaction with heat absorption and soret effects, Heat Transfer, 51, 1, 733-752 (2022) · doi:10.1002/htj.22327
[34] Wawira, N. C.; Kinyanjui, M.; Giterere, K., Hydromagnetic non-Newtonian fluid flow in a convergent conduit, Journal of Applied Mathematics, 2022 (2022) · Zbl 1517.76008 · doi:10.1155/2022/8131528
[35] Ferdows, M.; M Al-Mdallal, Q., Effects of order of chemical reaction on a boundary layer flow with heat and mass transfer over a linearly stretching sheet, American Journal of Fluid Dynamics, 2, 6, 89-94 (2013) · doi:10.5923/j.ajfd.20120206.01
[36] Ojiambo, V.; Kinyanjui, M.; Kimathi, M., A study of two-phase Jeffery Hamel flow in a geothermal pipe, International Journal of Advances in Applied Mathematics and Mechanics (2018) · Zbl 1469.76134
[37] Sattar, M. A., Derivation of the similarity equation of the 2-D unsteady boundary layer equations and the corresponding similarity conditions, American Journal of Fluid Dynamics, 3, 5, 135 (2013)
[38] Raptis, A., Flow of a micropolar fluid past a continuously moving plate by the presence of radiation, International Journal of Heat and Mass Transfer, 41, 18, 2865-2866 (1998) · Zbl 0922.76050 · doi:10.1016/S0017-9310(98)00006-4
[39] Raptis, A., Radiation and viscoelastic flow, International Communications in Heat and Mass Transfer, 26, 6, 889-895 (1999) · doi:10.1016/S0735-1933(99)00077-9
[40] Pal, D.; Chatterjee, S., Soret and Dufour effects onMHDconvective heat and mass transfer of a power-law fluid over an inclined plate with variable thermal conductivity in a porous medium, Applied Mathematics and Computation, 219, 14, 7556-7574 (2013) · Zbl 1366.76097 · doi:10.1016/j.amc.2012.10.119
[41] Shampine, L. F.; Shampine, L. F.; Gladwell, I.; Thompson, S., Solving ODEs with Matlab (2003), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 1079.65144
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.