×

Remarks on the preservation of no-signaling principle in parity-time-symmetric quantum mechanics. (English) Zbl 1435.81047

Summary: Working within the framework of parity-time-symmetric quantum mechanics, we look into the possibility of entanglement generation and demonstrate that the feature of non-violation of no-signaling principle may hold for the simplest nontrivial case of bipartite systems. Basically, our arguments are based on the computation of the reduced density matrix of one party to justify that the entropy of the other does not change.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P40 Quantum coherence, entanglement, quantum correlations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Nielsen, M. and Chuang, I., Quantum Computation and Quantum Information (Cambridge Univ. Press, 2002). · Zbl 1049.81015
[2] Bengtsson, I. and Zyczkowski, K., Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge Univ. Press, 2007). · Zbl 1155.81002
[3] M. Walter, D. Gross and J. Eisert, arXiv:1612.02437.
[4] P. K. Panigrahi, Quantum Computation: An Introduction (Unpublished Lectures at Indian Institute of Technology, Kanpur, 2015).
[5] Scolarici, G. and Solombrino, L., J. Phys. A42, 055303 (2009). · Zbl 1155.81021
[6] Zielinski, C. and Wang, Q., Int. J. Theor. Phys.51, 2648 (2012). · Zbl 1252.81018
[7] Bender, C. M. and Boettcher, S., Phys. Rev. Lett.80, 5243 (1998). · Zbl 0947.81018
[8] El-Ganainy, R.et al., Nat. Phys.14, 11 (2018).
[9] Bendix, O., Fleischmann, R., Kottos, T. and Shapiro, B., Phys. Rev. Lett.103, 030402 (2009). · Zbl 1254.81042
[10] Musslimani, Z. H., Makris, K. G., El-Ganainy, R. and Christodoulides, D. N., J. Phys. A: Math. Theor.41, 244019 (2008). · Zbl 1140.81362
[11] Makris, K. G., El-Ganainy, R., Christodoulides, D. N. and Musslimani, Z. H., Phys. Rev. Lett.100, 103904 (2008).
[12] Dirac, P. A. M., Proc. R. Soc. Lond. A Math. Phys. Sci.180, 1 (1942). · Zbl 0060.45501
[13] Bender, C. M., PT Symmetry: In Quantum and Classical Physics (World Scientific, 2019).
[14] Bagchi, B., Quesne, C. and Znojil, M., Mod. Phys. Lett. A16, 2047 (2001). · Zbl 1138.81375
[15] Japaridze, G. S., J. Phys. A: Math. Gen.35, 1709 (2002). · Zbl 1010.81019
[16] Bender, C. M., Brody, D. C. and Jones, H. F., Phys. Rev. Lett.89, 270401 (2002) [Erratum-ibid.92, 119902 (2004)].
[17] Bagchi, B.et al., Int. J. Mod. Phys. A20, 7107 (2005).
[18] Japaridze, G. S., Pokhrel, D. and Wang, X. Q., J. Phys. A: Math. Theor.50, 18503 (2017).
[19] Tang, J. S.et al., Nat. Photonics10, 642 (2016).
[20] Pati, A. K., Pramana-J. Phys.73, 485 (2009).
[21] Lee, Y., Hsiu, M., Flammia, S. and Lee, R., Phys. Rev. Lett.112, 130404 (2014).
[22] Croke, S., Phys. Rev A.91, 052113 (2015).
[23] Beygi, A. and Klevansky, S. P., Phys. Rev. A98, 022105 (2018).
[24] Mostafazadeh, A., Int. J. Geom. Methods Mod. Phys.7, 1191 (2010). · Zbl 1208.81095
[25] Mostafazadeh, A., J. Math. Phys.43, 205 (2002). · Zbl 1059.81070
[26] Braunstein, S. L.et al., Phys. Rev. A73, 012320 (2006).
[27] Joglekar, Y. N., Thompson, C., Scott, D. D. and Vemuri, G., Eur. Phys. J. Appl. Phys.63, 30001 (2013).
[28] Bender, C. M. and Brody, D. C., Am. J. Phys.71, 1095 (2003). · Zbl 1219.81125
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.