×

Nutrient-plankton models with nutrient recycling. (English) Zbl 1139.92317

Summary: Nutrient-phytoplankton-zooplankton interaction with general uptake functions in which nutrient recycling is either instantaneous or delayed is considered. To account for higher predation, zooplankton’s death rate is modeled by a quadratic term instead of the usual linear function. Persistence conditions for each of the delayed and nondelayed models are derived. Numerical simulations with data from the existing literature are explored to compare the two models. It is demonstrated numerically that increasing zooplankton death rate can eliminate periodic solutions of the system in both the instantaneous and the delayed nutrient recycling models. However, the delayed nutrient recycling can actually stabilize the nutrient-plankton interaction.

MSC:

92D40 Ecology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Riley, G. A.; Stommel, H.; Burrpus, D. P., Qualitative ecology of the plankton of the Western North Atlantic, Bull. Bingham Oceanogr. Collect, 12, 1-169 (1949)
[2] Busenberg, S.; Kumar, S. K.; Austin, P.; Wake, G., The dynamics of a model of a plankton-nutrient interaction, Bull. Math. Biol., 52, 677-696 (1990) · Zbl 0704.92020
[3] Edwards, A. M., Adding detritus to a nutrient-phytoplankton-zooplankton model: A dynamical-systems approach, J. Plankton Res., 23, 389-413 (2001)
[4] Edwards, A. M.; Brindley, J., Zooplankton mortality and the dynamical behaviour of plankton population models, Bull. Math. Biol., 61, 303-339 (1999) · Zbl 1323.92162
[5] Edwards, A. M.; Brindley, J., Oscillatory behaviour in a three-component plankton population model, Dyna. Stabi. Syst., 11, 347-370 (1996) · Zbl 0871.92029
[6] Edwards, A. M.; Yool, A., The role of higher predation in plankton population models, J. Plankton Res., 22, 1085-1112 (2000)
[7] Jang, S. R.-J., Dynamics of variable-yield nutrient-phytoplankton-zooplankton models with nutrient recycling and shelf-shading, J. Math. Biol., 40, 229-250 (2000) · Zbl 0998.92039
[8] Jang, S. R.-J.; Baglama, J., Qualitative behavior of a variable-yield simple food chain with an inhibiting nutrient, Math. Biosci., 164, 65-80 (2000) · Zbl 1054.92507
[9] Jang, S. R.-J.; Baglama, J., Persistence in variable-yield nutrient plankton models, Mathl. Comput. Modelling, 38, 3/4, 281-298 (2003) · Zbl 1045.92045
[10] Ruan, S., Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient recycling, J. Math. Biol., 31, 633-654 (1993) · Zbl 0779.92021
[11] Ruan, S., Oscillations in plankton models with nutrient recycling, J. Theor. Biol., 208, 15-26 (2001)
[12] Steele, J. H.; Henderson, E. W., A simple plankton model, Ameri. Nat., 117, 676-691 (1981)
[13] Truscott, J. E., Environmental forcing of simple plankton models, J. Plankton Res., 17, 2207-2232 (1995)
[14] Truscott, J. E.; Brindley, J., Ocean plankton populations as excitable media, Bull. Math. Biol., 56, 981-998 (1994) · Zbl 0803.92026
[15] Truscott, J. E.; Brindley, J., Equilibria, stability and excitability in a general class of plankton population models, Phil. Trans. R. Soc. Lond. A, 347, 703-718 (1994) · Zbl 0857.92017
[16] Brentnall, S. J.; Richards, K. J.; Brindley, J.; Murphy, E., Plankton patchiness and its effect on larger-scale productivity, J. Plankton Res., 25, 121-140 (2003)
[17] Kumar, S. K.; Vincent, W. F.; Austin, P.; Wake, G., Picoplankton and marine food chain dynamics in a variable mixed-layer: A reaction-diffusion model, Ecolog. Model., 5, 195-219 (1991)
[18] Levin, S. A., Population dynamics and community structure in heterogeneous environments, (Hallam, T. G.; Levin, S. A., Mathematical Biology (1980)), 295-320
[19] Steele, J. H.; Henderson, E. W., A simple model for plankton patchiness, J. Plankton Res., 14, 1397-1403 (1992)
[20] Steele, J. H.; Henderson, E. W., The role of predation in plankton models, J. Plankton Res., 14, 157-172 (1992)
[21] Wroblewski, J. S., A model of phytoplankton plume formation during variable Oregon upwelling, J. Marine Res., 35, 357-394 (1977)
[22] Wroblewski, J. S.; Sarmiento, J. L.; Fliel, G. R., An ocean basin scale model of plankton dynamics in the North Atlantic 1. Solution for the climatological oceanographic condition in May, Global Biogeochem, Cycles, 2, 199-218 (1988)
[23] De Angelis, S. L., Dynamics of Nutrient Cycling and Food Webs, ((1992), Chapman and Hall: Chapman and Hall Berlin)
[24] Beretta, E.; Bischi, G.; Solimano, F., Stability in chemostat equations with delayed nutrient recycling, J. Math. Biol., 28, 99-111 (1990) · Zbl 0665.45006
[25] Beretta, E.; Takeuchi, Y., Qualitative properties of chemostat equations with time delays: Boundedness, local and global asymptotic stability, Diff. Equ. Dynam. Sys., 2, 19-40 (1994) · Zbl 0868.45002
[26] Thieme, H. R., Persistence under relaxed point-dissipativity (with application to an epidemic model), SIAM J. Math. Anal., 24, 407-435 (1993) · Zbl 0774.34030
[27] Yoshizawa, T., Stability Theory by Liapunov’s Second Method (1966), The Mathematical Society of Japan: The Mathematical Society of Japan New York · Zbl 0144.10802
[28] Cushing, J. M., Integrodifferential Equation and Delay Models in Population Dynamics (1977), Springer-Verlag: Springer-Verlag Tokyo · Zbl 0363.92014
[29] Kung, Y., Delayed Differential Equations with Applications in Population Dynamics (1993), Academic Press: Academic Press Heidelberg
[30] MacDonald, N., Time Lags in Biological Models (1978), Springer-Verlag: Springer-Verlag New York · Zbl 0403.92020
[31] Ruan, S.; Wolkowicz, G., Uniform persistence in plankton models with delayed nutrient recycling, Canad. Appl. Math. Quart., 3, 219-235 (1995) · Zbl 0837.92028
[32] Grover, J., The impact of variable stoichiometry on predator-prey interactions: A multinutrient approach, Amer. Natur., 162, 29-43 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.