zbMATH — the first resource for mathematics

Homological localisation of model categories. (English) Zbl 1318.55009
A stable model category is a model category of a particular kind; in particular, if \({\mathcal C}\) is a stable model category then the homotopy category \(\text{Ho}({\mathcal C})\) is a module over the stable homotopy category \(\text{Ho}({\mathcal S})\).
Let \(E\) be a spectrum, and consider \(\text{Ho}(L_E{\mathcal S})\), the Bousfield localisation of the stable homotopy category at \(E\). Given a well-behaved stable model category \({\mathcal C}\), the authors construct a new model structure \({\mathcal C}_E\) on \({\mathcal C}\) such that the action of \(\text{Ho}({\mathcal S})\) on \(\text{Ho}({\mathcal C}_E)\) factors through \(\text{Ho}(L_E{\mathcal S})\), and they show that \({\mathcal C}_E\) has a universal property. Also, for a stable model category \({\mathcal C}\) with an equivalence \(\Phi: \text{Ho}(L_E{\mathcal S})\to \text{Ho}({\mathcal C})\), they show that \(L_E{\mathcal S}\) and \({\mathcal C}\) are Quillen equivalent if and only if \(\Phi\) is a equivalence of \(\text{Ho}({\mathcal S})\)-module categories.

55P42 Stable homotopy theory, spectra
55P60 Localization and completion in homotopy theory
18E30 Derived categories, triangulated categories (MSC2010)
Full Text: DOI arXiv
[1] Bergner, JE, Homotopy fiber products of homotopy theories, Israel J. Math., 185, 389-411, (2011) · Zbl 1256.18011
[2] Bousfield, AK, The localization of spectra with respect to homology, Topology, 18, 257-281, (1979) · Zbl 0417.55007
[3] Barnes, D; Roitzheim, C, Local framings, N. Y. J. Math., 17, 513-552, (2011) · Zbl 1260.55010
[4] Barnes, D; Roitzheim, C, Stable left and right bousfield localisations, Glasg. Math. J., FirstView, 1-30, (2013) · Zbl 1297.55020
[5] Dugger, D; Shipley, B, Enriched model categories and an application to additive endomorphism spectra, Theor. Appl. Categ., 18, 400-439, (2007) · Zbl 1125.18007
[6] Elmendorf, A.D., Kriz, I., Mandell, M.A., May, J.P.: Rings, modules, and algebras in stable homotopy theory, volume 47 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (1997). With an appendix by M. Cole · Zbl 0894.55001
[7] Goerss, P.G., Jardine, J.F.: Simplicial homotopy theory, volume 174 of Progress in Mathematics. Basel, Birkhäuser Verlag (1999) · Zbl 0949.55001
[8] Gutiérrez, JJ, Homological localizations of Eilenberg-mac Lane spectra, Forum Math., 22, 349-356, (2010) · Zbl 1207.55009
[9] Hirschhorn, P.S.: Model categories and their localizations, volume 99 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2003)
[10] Hovey, M.: Model categories, volume 63 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (1999)
[11] Hovey, M, Spectra and symmetric spectra in general model categories, J. Pure Appl. Algebra, 165, 63-127, (2001) · Zbl 1008.55006
[12] Hovey, M; Strickland, NP, Morava \(K\)-theories and localisation, Mem. Am. Math. Soc., 139, viii+100, (1999) · Zbl 0929.55010
[13] Hovey, M; Shipley, B; Smith, J, Symmetric spectra, J. Am. Math. Soc., 13, 149-208, (2000) · Zbl 0931.55006
[14] Lenhardt, F, Stable frames in model categories, J. Pure Appl. Algebra, 216, 1080-1091, (2012) · Zbl 1273.55004
[15] Ravenel, D.C.: Nilpotence and periodicity in stable homotopy theory, volume 128 of Annals of Mathematics Studies. Princeton University Press, Princeton (1992). Appendix C by Jeff Smith · Zbl 0774.55001
[16] Roitzheim, C, Rigidity and exotic models for the \(K\)-local stable homotopy category, Geom. Topol., 11, 1855-1886, (2007) · Zbl 1142.55007
[17] Schwede, S, The stable homotopy category is rigid, Ann. Math. (2), 166, 837-863, (2007) · Zbl 1151.55007
[18] Schwede, S; Shipley, B, Algebras and modules in monoidal model categories, Proc. London Math. Soc. (3), 80, 491-511, (2000) · Zbl 1026.18004
[19] Schwede, S; Shipley, B, Stable model categories are categories of modules, Topology, 42, 103-153, (2003) · Zbl 1013.55005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.