×

zbMATH — the first resource for mathematics

Rational orthogonal calculus. (English) Zbl 1386.55012
Orthogonal calculus, developed by M. Weiss [Trans. Am. Math. Soc. 347, No. 10, 3743–3796 (1995; Zbl 0866.55020)], studies homotopy properties of continuous functors from the category of finite-dimensional real inner product spaces and isometries to the category of based spaces. It constructs a Taylor tower for such functors, where the \(n\)th layer of the tower is determined by a spectrum with \(O(n)\)-action. In this paper, the author uses model categories to construct a rational version of orthogonal calculus. Thus, given a continuous functor \(F\) as above, he constructs a tower of approximations of \(F\) that depends only on the (objectwise) rational homology type of \(F\). The \(n\)th layer is given by a rational spectrum with \(O(n)\)-action. It follows from the work of J.P.C. Greenlees and B. Shipley [Bull. Lond. Math. Soc. 46, No. 1, 133–142 (2014; Zbl 1294.55002)] that these layers are classified by torsion \(H^\ast(\text{B}\mathrm{SO}(n);{\mathbb{Q}})[O(n)/\mathrm{SO}(n)]\)-modules.
MSC:
55P42 Stable homotopy theory, spectra
55U35 Abstract and axiomatic homotopy theory in algebraic topology
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Arone, G; Lambrechts, P; Volić, I, Calculus of functors, operad formality, and rational homology of embedding spaces, Acta Math., 199, 153-198, (2007) · Zbl 1154.57026
[2] Arone, G, The Weiss derivatives of \(B\text{O}(-)\) and \(B\text{ U }(-)\), Topology, 41, 451-481, (2002) · Zbl 1006.55009
[3] Barnes, D; Oman, P, Model categories for orthogonal calculus, Algebraic Geom. Topol., 13, 959-999, (2013) · Zbl 1268.55001
[4] Bousfield, AK, The localization of spaces with respect to homology, Topology, 14, 133-150, (1975) · Zbl 0309.55013
[5] Barnes, D; Roitzheim, C, Local framings, N. Y. J. Math., 17, 513-552, (2011) · Zbl 1260.55010
[6] Barnes, D; Roitzheim, C, Stable left and right bousfield localisations, Glasg. Math. J., 56, 13-42, (2014) · Zbl 1297.55020
[7] Farjoun, E.D.: Cellular Spaces, Null Spaces and Homotopy Localization. Lecture Notes in Mathematics, vol. 1622. Springer, Berlin (1996) · Zbl 0842.55001
[8] Gutiérrez, J.J., Roitzheim, C.: Bousfield localisations along Quillen bifunctors. Appl. Categor. Struct. (2017). doi:10.1007/s10485-017-9485-z · Zbl 1387.55014
[9] Greenlees, J; Shipley, B, An algebraic model for free rational \(G\)-spectra, Bull. Lond. Math. Soc., 46, 133-142, (2014) · Zbl 1294.55002
[10] Hirschhorn, P.: Model Categories and Their Localizations. Mathematical Surveys and Monographs, vol. 99. American Mathematical Society, Providence (2003) · Zbl 1017.55001
[11] Hovey, M, Spectra and symmetric spectra in general model categories, J. Pure Appl. Algebra, 165, 63-127, (2001) · Zbl 1008.55006
[12] Mandell, M., May, P.: Equivariant orthogonal spectra and \(S\)-modules. Mem. Am. Math. Soc. 159(755), x+108 (2002) · Zbl 1025.55002
[13] Mandell, M., May, P., Schwede, S., Shipley, B.: Model categories of diagram spectra. Proc. Lond. Math. Soc. (3) 82(2), 441-512 (2001) · Zbl 1017.55004
[14] May, P., Ponto, K.: More Concise Algebraic Topology. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (2012) · Zbl 1249.55001
[15] Reis, R., Weiss, M.: Rational Pontryagin classes and functor calculus (2015). Preprint, arXiv:1102.0233 · Zbl 1353.57026
[16] Walter, B.: Rational homotopy calculus (2006). Preprint · Zbl 1294.55002
[17] Weiss, M, Orthogonal calculus, Trans. Am. Math. Soc., 347, 3743-3796, (1995) · Zbl 0866.55020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.