×

zbMATH — the first resource for mathematics

When can environmental variability benefit population growth? Counterintuitive effects of nonlinearities in vital rates. (English) Zbl 1302.92139
Summary: Using models for unstructured populations, we investigate the effect of environmental variability on population growth when the environment affects vital rates through nonlinear functions. We focus here especially on interannual variation in food resources availability, for which sigmoid functions are relevant. Considering first unregulated populations in stochastic environments, we show that classic sigmoid annual growth rates cannot lead to positive effects of increased environmental variability on population growth. This is true even when the temporal average of food availability is low, and Jensen’s inequality predicts an increased arithmetic mean of the annual growth rate. The result is due to the log-concavity of many sigmoid (and other accelerating) functions, as convexity of the logarithm of the annual growth rate is needed for positive effects of variability to appear. Then, separating the effects of a food availability variable on reproduction and survival rates, we show that populations with less sensitive survival rate to food are more likely to benefit from food variability – as opposed to populations that have survival rates accelerating with food availability, which is rather counterintuitive given Jensen’s inequality. Again, this is explained by log-convexity properties of nonlinear functions. We further extend these results to regulated populations, in which similar positive effects of food variability can affect average population size. Positive variability effects seem however more likely to occur in regulated populations. Finally, we extend our results to stage-structured populations. We connect to the previous work showing positive effects of environmental variability with matrix models, and show that these effects are well captured by simpler unstructured models.

MSC:
92D40 Ecology
92D25 Population dynamics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Altwegg, R.; Anderson, M. D., Rainfall in arid zones: possible effects of climate change on the population ecology of blue cranes, Funct. Ecol., 23, 5, 1014-1021, (2009)
[2] Altwegg, R.; Roulin, A.; Kestenholz, M.; Jenni, L., Demographic effects of extreme winter weather in the barn owl, Oecologia, 149, 1, 44-51, (2006)
[3] Bayliss, P.; Choquenot, D., The numerical response: rate of increase and food limitation in herbivores and predators, Philos. Trans. R. Soc. B., 357, 1425, 1233-1248, (2002)
[4] Benaïm, M.; Schreiber, S. J., Persistence of structured populations in random environments, Theor. Popul. Ecol., 76, 1, 19-34, (2009) · Zbl 1213.92057
[5] Boyce, M. S.; Haridas, C. V.; Lee, C. T., Demography in an increasingly variable world, Trends. Ecol. Evol., 21, 3, 141-148, (2006)
[6] Campbell, R. D.; Nouvellet, P.; Newman, C.; Macdonald, D. W.; Rosell, F., The influence of mean climate trends and climate variance on beaver survival and recruitment dynamics, Global. Change. Biol., 18, 9, 2730-2742, (2012)
[7] Caswell, H., Matrix population models, (2001), Sinauer Associates
[8] Cohen, J. E., Convexity properties of products of random nonnegative matrices, Proc. Natl. Acad. Sci. USA, 77, 7, 3749-3752, (1980) · Zbl 0442.15011
[9] Coulson, T.; Ezard, T. H.G.; Pelletier, F.; Tavecchia, G.; Stenseth, N. C.; Childs, D. Z.; Pilkington, J. G.; Pemberton, J. M.; Kruuk, L. E.B.; Clutton-Brock, T. H.; Crawley, M. J., Estimating the functional form for the density dependence from life history data, Ecology, 89, 6, 1661-1674, (2008)
[10] Dalgleish, H. J.; Koons, D. N.; Hooten, M. B.; Moffet, C. A.; Adler, P. B., Climate influences the demography of three dominant sagebrush steppe plants, Ecology, 92, 1, 75-85, (2011)
[11] Davis, S. A.; Pech, R. P.; Catchpole, E. A., Populations in variable environments: the effect of variability in a species’ primary resource, Philos. Trans. R. Soc. B, 357, 1425, 1249-1257, (2002)
[12] Drake, J. M., Population effects of increased climate variation, Proc. R. Soc. B, 272, 1574, 1823-1827, (2005)
[13] Frederiksen, M.; Daunt, F.; Harris, M. P.; Wanless, S., The demographic impact of extreme events: stochastic weather drives survival and population dynamics in a long-lived seabird, J. Anim. Ecol., 77, 5, 1020-1029, (2008)
[14] Gaillard, J. M.; Yoccoz, N. G., Temporal variation in survival of mammals: a case of environmental canalization?, Ecology, 84, 12, 3294-3306, (2003)
[15] Gilg, O.; Hanski, I.; Sittler, B., Cyclic dynamics in a simple vertebrate predator-prey community, Science, 302, 5646, 866-868, (2003)
[16] Gilg, O.; Sittler, B.; Sabard, B.; Hurstel, A.; Sané, R.; Delattre, P.; Hanski, I., Functional and numerical responses of four lemming predators in high arctic greenland, Oikos, 113, 2, 193-216, (2006)
[17] Haridas, C. V.; Tuljapurkar, S., Elasticities in variable environments: properties and implications, Am. Nat., 166, 4, 481-495, (2005)
[18] Henden, J. A.; Bårdsen, B. J.; Yoccoz, N. G.; Ims, R. A., Impacts of differential prey dynamics on the potential recovery of endangered arctic fox populations, J. Appl. Ecol., 45, 4, 1086-1093, (2008)
[19] Jonzén, N.; Pople, T.; Knape, J.; Sköld, M., Stochastic demography and population dynamics in the red kangaroo macropus rufus, J. Anim. Ecol., 79, 1, 109-116, (2010)
[20] Koons, D. N.; Pavard, S.; Baudisch, A.; Metcalf, J. E., Is life-history buffering or lability adaptive in stochastic environments?, Oikos, 118, 7, 972-980, (2009)
[21] Lande, R.; Engen, S.; Sæther, B., Stochastic population dynamics in ecology and conservation, (2003), Oxford University Press USA
[22] Lebreton, J. D.; Burnham, K. P.; Clobert, J.; Anderson, D. R., Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies, Ecol. Monogr., 62, 1, 67-118, (1992)
[23] Lee, C.; Tuljapurkar, S., Population and prehistory I: food-dependent population growth in constant environments, Theor. Popul. Ecol., 73, 4, 473-482, (2008) · Zbl 1210.92054
[24] Lee, C. T.; Puleston, C. O.; Tuljapurkar, S., Population and prehistory III: food-dependent demography in variable environments, Theor. Popul. Ecol., 76, 3, 179-188, (2009) · Zbl 1213.92064
[25] Lewontin, R. C.; Cohen, D., On population growth in a randomly varying environment, Proc. Natl. Acad. Sci. USA, 62, 4, 1056-1060, (1969)
[26] Morris, W. F.; Pfister, C. A.; Tuljapurkar, S.; Haridas, C. V.; Boggs, C. L.; Boyce, M. S.; Bruna, E. M.; Church, D. R.; Coulson, T.; Doak, D. F.; Forsyth, S.; Gaillard, J.; Horvitz, C. C.; Kalisz, S.; Kendall, B. E.; Knight, T. M.; Lee, C. T.; Menges, E. S., Longevity can buffer plant and animal populations against changing climatic variability, Ecology, 89, 1, 19-25, (2008)
[27] Puleston, C. O.; Tuljapurkar, S., Population and prehistory II: space-limited human populations in constant environments, Theor. Popul. Ecol., 74, 2, 147-160, (2008) · Zbl 1210.92057
[28] Sandvik, H.; Erikstad, K. E.; Barrett, R. T.; Yoccoz, N. G., The effect of climate on adult survival in five species of north atlantic seabirds, J. Anim. Ecol., 74, 5, 817-831, (2005)
[29] Stien, A.; Ims, R. A.; Albon, S. D.; Fuglei, E.; Irvine, R. J.; Ropstad, E.; Halvorsen, O.; Langvatn, R.; Loe, L. E.; Veiberg, V.; Yoccoz, N. G., Congruent responses to weather variability in high arctic herbivores, Biol. Lett., 8, 1002-1005, (2012)
[30] Tuljapurkar, S., Population dynamics in variable environments, (1990), Springer New York · Zbl 0704.92014
[31] Tuljapurkar, S., Environmental variance, population growth and evolution, J. Anim. Ecol., 79, 1, 1-3, (2010)
[32] van de Pol, M.; Vindenes, Y.; Sæther, B. E.; Engen, S.; Ens, B. J.; Oosterbeek, K.; Tinbergen, J. M., Effects of climate change and variability on population dynamics in a long-lived shorebird, Ecology, 91, 4, 1192-1204, (2010)
[33] Wilmers, C.; Post, E.; Hastings, A., The anatomy of predator-prey dynamics in a changing climate, J. Anim. Ecol., 76, 6, 1037-1044, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.